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Representations of imaginary 
scenes and their properties 
in cortical alpha activity
Rico Stecher 1* & Daniel Kaiser 1,2

Imagining natural scenes enables us to engage with a myriad of simulated environments. How do our 
brains generate such complex mental images? Recent research suggests that cortical alpha activity 
carries information about individual objects during visual imagery. However, it remains unclear if 
more complex imagined contents such as natural scenes are similarly represented in alpha activity. 
Here, we answer this question by decoding the contents of imagined scenes from rhythmic cortical 
activity patterns. In an EEG experiment, participants imagined natural scenes based on detailed 
written descriptions, which conveyed four complementary scene properties: openness, naturalness, 
clutter level and brightness. By conducting classification analyses on EEG power patterns across 
neural frequencies, we were able to decode both individual imagined scenes as well as their properties 
from the alpha band, showing that also the contents of complex visual images are represented in 
alpha rhythms. A cross-classification analysis between alpha power patterns during the imagery task 
and during a perception task, in which participants were presented images of the described scenes, 
showed that scene representations in the alpha band are partly shared between imagery and late 
stages of perception. This suggests that alpha activity mediates the top-down re-activation of scene-
related visual contents during imagery.

Our ability to evoke mental images of natural scenes enriches our lives by giving shape to the worlds in our 
favorite novels or by enabling us to navigate the environment. Visual imagery is thought of as a top-down recall 
of sensory-memory information initiated in frontal cortex that reactivates cortical areas that are typically involved 
in visual  perception1. For example, when imagining natural scenes, the scene network, a network of cortical 
areas that is typically active during scene perception, is re-engaged2–4. Imagery recruits shared representations 
with perception across the entire visual hierarchy, although more extensively in high-level visual  areas1,5,6. What 
neural mechanisms underlie this top-down re-instantiation of visual contents?

One possibility is that imagery-related information is encoded in neural rhythms that are involved in top-
down processing. Previous research has provided evidence that alpha and beta rhythms carry top-down infor-
mation in the visual  cortex7–10, making them likely candidates to play a role in imagery processing. In the past 
decades, the relation between alpha activity and visual imagery has been studied to quite an extent. While many 
studies have found a correlation between changes in alpha rhythms and visual  imagery11–15, what exact informa-
tion is encoded in these alpha rhythms has remained elusive for a long time. However, more recently popularized 
multivariate pattern analysis (MVPA)  techniques16,17 have since enabled us to probe the representational content 
of alpha activity during visual imagery.

A recent EEG MVPA  study18 found that alpha oscillations contained representations of the visual contents of 
imagined objects. Interestingly, these alpha band representations were also shared with late time windows during 
perception. While this does provide evidence that alpha oscillations carry out the top-down re-instantiation of 
perceptual contents, the imagery task employed in this study (imagining isolated objects) is not very representa-
tive of the imagery tasks we typically perform in our daily lives. A lot of our everyday tasks like reading, spatial 
navigation or mental simulation of future events require us to imagine not just single objects, but complex natural 
 scenes19–21. Compared to isolated objects, perceptual processing of natural scenes requires several scene-specific 
steps such as the analysis of scene-diagnostic low-level image  statistics22, (global) scene  properties23 and object 
 arrangements24,25. It is thus critical to understand if the top-down re-instantiation of scene information during 
imagery is also mediated by cortical alpha activity.
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In the present study, we thus aimed to answer the question if natural scenes and their properties are repre-
sented in cortical alpha activity during visual imagery and if these representations are shared with perceptual 
processing. To that end, we conducted an EEG experiment in which participants imagined natural scenes based 
on a written description and viewed images of the same scenes in a separate task. The scenes varied in four 
properties which have previously been investigated in the scene literature: openness, naturalness, clutter level 
and  brightness26,27. We employed frequency-resolved multivariate pattern classification to track the representa-
tions of scenes across neural rhythms, and imagery-perception cross-classification to investigate whether scene 
representations are similarly coded in rhythmic cortical activity during imagery and perception.

We show that imagined natural scenes and their properties are represented in cortical alpha activity and 
that scene representations in the alpha frequency band are partly shared between scene imagery and late stages 
of scene perception. Our results indicate that cortical alpha activity mediates the top-down re-instantiation of 
complex natural scenes during visual imagery.

Results
In order to investigate the neural representations of imagined and perceived scenes and their properties in neural 
rhythms, we conducted two experimental tasks while participants’ neural activity was recorded via EEG (see 
Fig. 1c for a schematic of the tasks). In the imagery task, participants imagined natural scenes for 4000 ms based 
on a detailed, three-sentence description of each scene (see Fig. 1a for an example). The 16 described scenes 
varied independently in four properties: openness, naturalness, clutter level and brightness. After completing the 
imagery task, participants were asked to rate the imagined scenes in regard to the four properties on a scale from 
1 to 7. These ratings confirmed that, at least on average, the properties of the imagined scenes aligned with those 
conveyed by the descriptions (see Fig. 1b). In the subsequent perception task, participants viewed images that 
matched the scene descriptions (3 images per scene; see Fig. 1a) with each image being presented for 1000 ms.

Mean pairwise scene decoding
To identify at which neural frequencies information related to individual imagined scenes can be found, we 
conducted a mean pairwise frequency searchlight decoding analysis. We transformed the EEG signals across the 
entire imagery period into the frequency domain and trained classifiers to distinguish between each possible pair 
of imagined scenes based on power patterns across channels at each frequency from 4 to 30 Hz (see Fig. 2a for a 
schematic). Averaging the pairwise decoding accuracies across pairs yielded a measure of information content 
regarding the individual imagined scenes at each frequency. We found that the individual imagined scenes could 
be discriminated the best in the alpha frequency range (see Fig. 3a), with significant mean pairwise scene decod-
ing from 8 to 13 Hz, peaking at 11 Hz (p < 0.001). There was also some weaker, but sporadically significant mean 
pairwise scene decoding in the beta band (significant at 18 and 21 Hz), indicating that some information might 
also be contained there. These results suggest that individual imagined scenes are represented most prominently 
in the alpha frequency band.

Scene property decoding
We further examined how the four investigated properties (openness, naturalness, clutter level and brightness) of 
the imagined scenes are represented across the frequency domain. Using the same frequency searchlight approach 
as above, we had classifiers predict for each property which property category the imagined scene belonged to 
(e.g., for naturalness, if the scene was natural or man-made). This analysis revealed that all four properties could 
exclusively be decoded from the alpha band (see Fig. 3b). The decoding accuracy for each property peaked at 
around 10 Hz (openness: 9 Hz, p = 0.009; naturalness: 11 Hz; p < 0.001, clutter level: 10 Hz, p = 0.038; brightness: 
10 Hz, p = 0.031). Aligning with our decoding analysis of the individual scenes, these findings suggest that the 
properties of imagined scenes are also represented in cortical alpha activity.

Imagery-perception cross-decoding in the alpha frequency band
Next, we investigated if any of the of representations of the individual scenes or scene properties we found in the 
alpha band are shared between imagery and different stages of the perceptual processing hierarchy. To that end, 
we conducted the same mean pairwise and property decoding analyses, but trained the classifiers on alpha power 
patterns in the frequency-resolved imagery data and tested them on alpha power patterns at each time point 
in the time–frequency-resolved perception data and vice versa (see Fig. 2b for a schematic). We chose to assess 
these shared alpha representations across the entire imagery period while maintaining temporal resolution for 
the perceptual data in order to increase the power of the analysis, since imagery representations were found to 
be relatively invariable across  time18,28,29, whereas perceptual representations are thought to be more temporally 
 variable29–31. This yielded a time-resolved measure of shared representations in the alpha band between scene 
imagery and each stage in the processing hierarchy of scene perception, in which temporal representational 
variations index the procession of perceptual  processing32. In the mean pairwise scene cross-decoding analysis, 
we identified an increase in mean pairwise scene cross-decoding accuracy starting at around 600 ms during 
perceptual processing that was marginally significant (p = 0.068 at peak) at 750–800 ms (see Fig. 3c). This trend 
suggests that there are representations of individual scenes in the alpha band that are shared between scene 
imagery and late stages of scene perception. In the property cross-decoding analysis, we found relatively low but 
significant cross-classification performance for openness at 750 ms (p = 0.012) and for clutter level at 800–850 ms 
(p = 0.002 at peak) as well as 950–1000 ms (p = 0.008 at peak) in the perceptual processing hierarchy (see Fig. 3d). 
There also was marginally significant (p = 0.057) cross-decoding performance for brightness at 400 ms, but no 
significant cross-decoding performance for naturalness. The peak in cross-decoding accuracy for openness was 
very similar to the first peak in cross-decoding accuracy for clutter level and both aligned temporally almost 
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perfectly. They both also temporally overlapped with the marginally significant peak in the mean pairwise 
cross-decoding for the individual scenes. The results of our property cross-decoding analysis indicate that scene 
imagery shares representations with late scene perception in the alpha band, at least for some properties. We 
exploratively conducted all imagery-perception cross-decoding analyses in the theta and beta bands as well, but 
there was no solid evidence of shared scene representations in those frequency bands (see supplementary Fig. S3).

Figure 1.  Stimuli and Paradigm. (a) Stimuli used in the EEG experiment. Participants imagined 16 natural 
scenes according to detailed three-sentence descriptions (right) and in a separate task viewed images that 
matched these descriptions (three per scene; left). The scenes varied in their openness, naturalness, clutter level 
and brightness. (b) Average ratings of all four properties for each imagined scene. After finishing the imagery 
task, participants rated each imagined scene on a scale from 1 to 7 regarding the four investigated properties 
openness, naturalness, clutter level and brightness. On average, property ratings of imagined scenes aligned with 
the properties conveyed by the scene descriptions (e.g. the mental images of open scenes were also rated as high 
on the openness dimension and those of closed scenes were rated as low). Large circles: property category mean 
rating. Small circles: mean rating of individual scenes in the respective property category. (c) Experimental tasks. 
In the imagery task, participants were presented with a scene description surrounded by a black frame until 
they proceeded with a button press. A black fixation dot appeared and after a jittered interval of 1000–2000 ms, 
the fixation dot turned red which was their cue to imagine the scene within the surrounding frame. They were 
instructed to maintain the mental image of the scene while fixating the red dot until it turned black again 
after 4000 ms. In the perception task, participants were presented images for 1000 ms that matched the scene 
descriptions in the imagery task and were only tasked with attentively viewing them.
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Shuffled property decoding
In a control analysis, we assessed to what extent the representations the classifiers utilized during scene property 
decoding encode differences in individual scene features or property category information. We performed a 
shuffled property decoding analysis for both the imagery property decoding and imagery-perception property 
cross-decoding in which all scenes were randomly assigned to two mock property categories for all possible 
permutations and classifiers were trained to distinguish between these categories. Since property category infor-
mation is randomized in this decoding scheme, the classifiers should be limited to differentiate between these 
mock categories based on the features of the individual scenes they happen to encompass. If the property decod-
ing did not only use differences in individual scenes, but also more abstract information on property categories, 
shuffled property decoding performance should be reduced in comparison to the original property decoding 
performance, since the classifiers had no access to this additional source of information in the shuffled analysis. 
To test this, we compared the peak (cross-)decoding accuracy for each property that was discriminable in the 
original analyses to the shuffled property (cross-)decoding accuracy at the respective frequency or time point.

For the imagery property decoding analysis, we found higher peak decoding accuracies compared to the 
shuffled property decoding accuracies for all properties (see Fig. 4a). This difference was significant for openness 
(p = 0.015) and naturalness (p = 0.031), marginally significant for clutter level (p = 0.072) and not significant for 
brightness (p = 0.102). This implies that for openness, naturalness and potentially clutter level, there are prop-
erty category representations in the alpha band during scene imagery. We also conducted the shuffled property 
decoding at each frequency during imagery (see supplementary Fig. S4). While slightly lower in overall accuracy, 
the decoding performance profile looks strikingly similar to that in our mean pairwise scene decoding, further 
corroborating that the shuffled property decoding mainly reflects neural discriminability based on individual 
scene information.

For the imagery-perception property cross-decoding analysis, we conducted the comparison between prop-
erty cross-decoding and shuffled property cross-decoding for all properties except naturalness, since we did not 
find any interpretable cross-decoding accuracy peak for this property. We found higher cross-decoding accuracies 

Figure 2.  Decoding approaches. We conducted two main decoding analyses. In the imagery frequency 
decoding analysis (a), we investigated rhythmic scene representations during imagery by training classifiers 
on power patterns across all channels at each frequency from 4 to 30 Hz in the frequency-resolved imagery 
EEG data. In the imagery-perception cross-decoding analysis (b), we investigated shared scene representations 
between imagery and perception in the alpha band, by training the classifiers on alpha power patterns across all 
channels in the frequency-resolved imagery data and testing them on alpha power patterns across all channels 
at each time point in the time–frequency-resolved perception data and vice versa. We employed two decoding 
schemes in both analyses: a mean pairwise scene decoding and a scene property decoding. In the mean pairwise 
scene decoding, classifiers were trained to distinguish between each possible pair of scenes and decoding 
accuracies were averaged across each scene pair, as a measure of neural discriminability among individual 
scenes. In the scene property decoding, classifiers were trained to predict in which of two property categories 
a scene belonged for each property dimension the scenes varied in. In an additional control analysis, we 
re-conducted the scene property (cross-) decoding analyses by training classifiers to discriminate between mock 
property categories with randomly assigned scenes as a measure of neural discriminability between property 
categories based on individual scene features.
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compared to the shuffled property cross-decoding accuracies for all three investigated properties (see Fig. 4b). 
This was significant for all properties (openness: p = 0.008, clutter level: p = 0.004, brightness: p = 0.006), suggesting 
that there are category representations of these properties in the alpha band that are shared between imagery and 
late stages of perceptual processing. When conducting the shuffled property cross-decoding at each time point 
during perception (see supplementary Fig. S4), we found significant above-chance cross-decoding performance 
starting at about 750 ms, providing further evidence of shared scene representations between imagery and late 
perception in the alpha band.

Relationship between imagery vividness and neural representations in the alpha band
In an exploratory analysis, we investigated if there is a relationship between the participants’ ability to evoke vivid 
mental images and the neural representations in the alpha band of such mental images. We correlated their scores 
in the Vividness of Visual Imagery Questionnaire (VVIQ)33, which they provided online during recruitment, 

Figure 3.  Decoding of imagined scenes and their properties based on spatially distributed power patterns in 
rhythmic neural activity. (a) Mean pairwise decoding of imagined scenes at each frequency from 4 to 30 Hz. 
Individual imagined scenes could be discriminated the best from alpha band activity (8–13 Hz). (b) Scene 
property decoding. All properties could exclusively be decoded from the alpha frequency band. (c) Mean 
pairwise imagery-perception scene cross-decoding in the alpha frequency band at each time point during scene 
perception. A marginally significant trend suggests that there are shared representations of individual scenes in 
the alpha frequency band between imagery and late stages of perception. d) Imagery-perception scene property 
cross-decoding in the alpha frequency band at each time point during scene perception. For openness, clutter 
level and brightness (brightness being only marginally significant) we found evidence of shared representations 
in the alpha frequency band between imagery and late stages of perception. Error margins reflect the standard 
error of the mean. Square markers indicate significance at p < 0.05, cross markers indicate marginal significance 
at p < 0.1 (both corrected for multiple comparisons).
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with their peak in mean pairwise scene decoding and cross-decoding accuracy in the alpha band. While we did 
not find a meaningful correlation between the VVIQ and the peak in the mean pairwise decoding (Pearson’s 
r = 0.074, p = 0.307), we did find a marginally significant positive correlation with the peak in the mean pairwise 
cross-decoding (Pearson’s r = 0.2, p = 0.084). This marginal trend suggests that increased representational overlap 
between imagery and perception in the alpha band leads to a more vivid imagery experience, which aligns with 
previous research showing the same finding in the  fMRI34. To test whether this relationship is solid, future studies 
could use trial-wise ratings of imagery vividness, which tend to be a more reliable  measure34,35.

Discussion
In the present study, we investigated the representations of imagined and perceived natural scenes in rhythmic 
cortical activity. We found, as hypothesized, that both individual scenes as well as scene properties are represented 
in cortical alpha activity during visual imagery. We also found evidence that scene representations in the alpha 
frequency band are partly shared between imagery and late stages of perceptual processing.

These results indicate that the top-down reactivation of scene representations during visual imagery is enabled 
by cortical alpha activity. This aligns well with studies showing that alpha rhythms play a role in visual imagery 
(e.g.11,12), and specifically with the notion that imagery-related alpha oscillations are a top-down signal that 
represents the imagined visual  contents18. In more general terms, our results also support theories that postulate 
that top-down information flows are mediated by alpha dynamics in visual cortex (e.g.9).

Our decoding analyses revealed that all four investigated scene properties were discriminable from cortical 
alpha activity during visual imagery and that for all scene properties except naturalness (and brightness being 
only marginally significant) these alpha representations were shared with late stages of scene perception. Compar-
ing the initial imagery property decoding to a decoding scheme in which property categories were randomized 
showed that there were genuine and abstract representations of scene properties in the alpha band, which were 
observed for all properties except brightness during imagery (clutter level being only marginally significant). 
Extending this comparison to the imagery-perception cross-decoding, we found evidence of shared alpha rep-
resentations of abstract property information for openness, clutter level and brightness. These results suggest 
that, during imagery, alpha activity enables the top-down reactivation of scene property representations, some 
of which are shared with late stages of scene perception. This further implies that the representational division 
into (global) scene properties found during  perception36 also holds during imagery. One exception was, however, 
that we did not find any shared alpha representations for naturalness. A feasible explanation might be that, while 
participants rated the naturalness of the imagined scenes as expected, the natural and man-made contents they 
imagined might have differed from the natural and man-made contents in the images they viewed (e.g. differ-
ent types of natural or man-made objects), resulting in different neural representations being recruited during 
imagery and perception. The properties for which we did find evidence of shared representations (openness, 
clutter level and brightness) are much less dependent on the specific types of imagined objects.

Figure 4.  Comparison between peak scene property decoding accuracies and decoding accuracies with 
randomized property assignment (shuffled property decoding). (a) Comparison at the peak decoding frequency 
for each property in the imagery property decoding. Property decoding accuracies exceeded shuffled decoding 
accuracies for all properties. This was significant for openness, naturalness and marginally for clutter level, 
suggesting that there are representations of property category information of these properties in the alpha band. 
(b) Comparison at the peak imagery-perception property cross-decoding time points for all properties that 
were discriminable in the original analysis. For each property, property cross-decoding accuracies significantly 
exceeded the shuffled accuracies, suggesting that there are property category representations in the alpha band 
that are shared between scene imagery and late stages of scene perception. Error bars reflect the standard error 
of the mean. Asterisks indicate significance at p < 0.05, cross markers indicate marginal significance at p < 0.1.
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We found evidence of shared scene representations in the alpha band between imagery and perception from 
around 400 ms (for brightness) until 1000 ms (for clutter level) after stimulus onset. This is in alignment with 
previous studies employing cross-decoding techniques which have also reported late shared representations 
during perception. Xie et al.18, who originally found shared alpha representations between object imagery and 
perception, also reported late timings during perceptual processing with the strongest correspondence with 
imagery for perception emerging after 400 ms. Dijkstra et al.29 reported shared representations between imagery 
and perception up until 1000 ms during perception. Why would imagery reactivate representations that occur 
so late during perceptual processing? One potential explanation is that imagery and perception share fewer rep-
resentations in low-level and more in high-level visual  areas5, making it more likely that shared representations 
occur during later perceptual processing. This can be explained by the prominent conceptualization of imagery 
as a reverse reactivation of the perceptual hierarchy starting from high-level visual  cortex37,38. Following this 
notion, the representational format of cortical brain areas in late stages of perceptual processing (i.e. high-level 
visual cortex) is thought to be more similar to those in imagery since they are closer to the trigger source of 
the imagery  signal1. In alignment with this, Xie et al. found that the late shared alpha representations were best 
explained by complex visual features analyzed in high-level visual cortex. Thus, the shared alpha representa-
tions in our results might also reflect late processing in high-level visual areas. This is supported by our shuffled 
property control analysis that yielded that some of the shared property representations in the alpha band encode 
category information, which is typically represented in high-level visual  cortex39.

However, even if late shared representations between imagery and perception are not unexpected, the tim-
ings of our results are still quite late, given that processing of scenes and (global) scene properties (specifically 
openness, naturalness and clutter level) has been shown to be rapid and already occurs within the first 250 ms 
after stimulus  onset26,27,40–42. Since most research on the temporal dynamics of scene processing has focused on 
comparatively early neural  signatures43, what happens during such very late stages of scene processing is still 
largely unknown. Given that the perceived scene images in our study were presented throughout the entire 
analysis time window, a possible explanation is that the alpha representations scene perception shares with scene 
imagery in our data reflect recurrent processing of the scenes and their properties after the first feed-forward 
 sweep37. During recurrent processing, the perceptual representational format might be altered in a way that makes 
it more similar to imagery representations. Future studies could clarify to what extent recurrent processes shape 
the late representations in perception that generalize to imagery.

A final caveat in our results are the low decoding accuracies. Imagery-related brain signals tend to have a 
low signal-to-noise-ratio (e.g.44) which results in lower decoding accuracies in imagery studies that employ 
 MVPA18,29. Furthermore, our imagery task was designed to ensure that the imagined scenes sufficiently differed 
from the perceived scenes in terms of their low-level features. We had participants imagine the scenes based 
on descriptions that allow for variability in the generated mental images and only presented them the actual 
images after, so that if we did find shared representations between imagery and perception, they would not be 
based on similarities in low-level features. However, a side effect of this might have been reduced cross-decoding 
performance since the classifiers could not exploit such low-level features to a great extent. The cross-decoding 
performance might also have been impacted by the limited range of images in the perception task which might 
not fully cover the variability in the imagined visual contents. This could be remedied in future studies by gen-
erating a large image set based on the imagined prompts using text-to-image  algorithms45. In addition, due to 
the relatively long trial duration, we only had 192 imagery trials of training data per participant, which further 
limited classifier performance. As a result, in particular the very low cross-decoding accuracies (being less than 
1% above chance) need to be interpreted with caution. Nevertheless, there are multiple factors that point towards 
the cross-decoding results being a true effect. First, due to the low temporal resolution typically employed in 
time–frequency decomposition, there were only 20 post-stimulus time points in our perception data, which 
is considerably less than the hundreds of time points that typically require multiple comparison correction in 
temporally resolved decoding  analyses16 and we did appropriately correct for multiple comparisons. Second, we 
found the same latency of roughly 750–800 ms across four different analyses that investigated shared scene repre-
sentations using three different decoding schemes: the mean-pairwise cross-decoding (Fig. 3c), the openness and 
clutter level property cross-decoding (Fig. 3d) and the shuffled property cross-decoding (Fig. S4). Third, the late 
timings in the cross-decoding analyses roughly align with late timings reported in previous imagery-perception 
cross-decoding studies as discussed  above18,29. Fourth, the results of the shuffled property cross-decoding control 
analysis suggested that there are genuine property representations at the peak cross-decoding time points for 
openness, clutter level and brightness. Finally, decoding accuracies are considered a poor measure of effect size 
and low decoding accuracies can still constitute meaningful effects, indicating that information is represented 
consistently in neural response patterns across  participants46,47.

Overall, our results suggest that the top-down reactivation of scene representations during visual imagery is 
mediated by cortical alpha activity and that the re-instantiated alpha representations are partly shared with late 
stages of scene perception. They show that alpha dynamics are not only critical for generating mental images of 
individual objects, but also mediate the creation of complex natural environments in our mind’s eye.

Methods
Participants
50 participants (25 male; mean age = 25.74 years, SD = 6.31) with normal or corrected-to-normal eyesight took 
part in the experiment. One participant was excluded from all analyses because they did not complete the imagery 
task due to a technical error during the EEG recording. During recruitment, participants filled in a German 
translation of the Vividness of Visual Imagery Questionnaire (VVIQ)33, a common measure of a person’s aptitude 
at evoking mental images, on Limesurvey (https:// www. limes urvey. org/ en/). The scale of the VVIQ was reversed 

https://www.limesurvey.org/en/
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so that higher scores indicate better imagery performance and participants were only allowed to take part if they 
had a VVIQ score of at least 24/80, since scoring lower would constitute moderate to severe  aphantasia48. For a 
plot of the distribution of the VVIQ scores see supplementary Fig. S1. They provided written informed consent 
and received monetary compensation. The study was approved by the ethics committee of the Julius-Liebig-
University Gießen und was in accordance with the 6th Declaration of Helsinki.

Stimuli
Participants imagined and viewed 16 naturalistic scenes which independently varied in four properties: open-
ness (8 open and 8 closed scenes), naturalness (8 natural and 8 man-made scenes), clutter level (8 cluttered and 
8 sparse scenes) and brightness (8 bright and 8 dark scenes) (see Fig. 1a). During the imagery task, participants 
visualized each scene based on a three-sentence description in German (see Fig. 1a for an example and sup-
plementary Table S1 for a list of all descriptions with English translation). The descriptions were detailed (mean 
word count = 50.94, SD = 5.23) in order facilitate evoking rich mental images of the scenes as well as to ensure 
that the visualized scenes were as similar in properties to the described scenes (and thus the scenes used in 
the perception task, see below) as possible. In the perception task, participants viewed color images of scenes 
that matched the descriptions in the imagery task. Each participant was presented with three different images 
per scene description, in order to account for the variability in imagined scenes when assessing shared neural 
representations between imagery and perception later on. The total of 48 images (16 scenes × 3 images; see sup-
plementary Fig. S2 for all images) was taken from Google Images, cropped and resized to a resolution of 800 × 600 
pixels (21° horizontal visual angle). Brightness and contrast were adjusted where necessary to accentuate the 
desired lighting conditions (bright vs. dark) or enhance visibility.

Experiment design and procedure
The experiment consisted of two tasks (see Fig. 1c). Participants first performed the imagery task, in which they 
had to imagine scenes according to three-sentence descriptions (see Fig. 1a) while their EEG was recorded. 
At the beginning of each trial, participants were presented with a scene description at the center of the screen 
enclosed by a black frame (21° horizontal visual angle). The frame was visible throughout the entire trial to avoid 
evoking neural responses related to its onset. Participants were instructed to attentively read the description 
and try to identify all important aspects of the scene. They had an unlimited amount of time, but were asked to 
only take as long as needed, especially once they were more familiar with each description after multiple trials. 
Once they had familiarized themselves with the description, they pressed the spacebar and a black fixation dot 
appeared at the center of the screen. After a randomly jittered interval of 1000–2000 ms, the fixation dot turned 
red. This served as the cue to imagine the scene within the black frame that surrounded the red fixation dot. 
Participants were instructed to maintain the mental image of the scene while fixating the red dot until it turned 
black again after 4000 ms. Finally, a randomly jittered inter-trial interval (ITI) between 800–1200 ms followed, 
throughout which the black frame and fixation dot remained visible on screen. Before performing the imagery 
task, participants completed 16 practice trials (containing each scene once) which they underwent while their 
EEG cap was prepared. During the subsequent experiment, they were asked to imagine each of the 16 scenes 
12 times, resulting in 192 trials (96 per property category). Trials were separated into 12 blocks. In each block, 
participants imagined all scenes once in random order. After performing the imagery task, participants filled 
in a questionnaire on Limesurvey in which they had to rate the mental image they had of each of the 16 scenes 
in respect to the four scene properties (openness, naturalness, clutter level, brightness) on a Likert scale from 1 
to 7. We explicitly told the participants to make these ratings purely based on their mental images, even if they 
differed from the scenes in the descriptions. These ratings suggest that, at least on average, the properties of the 
scenes imagined by the participants aligned with the properties the scene descriptions intended to convey (see 
Fig. 1b for a plot of the ratings). After finishing the questionnaire, the participants took part in the perception 
task. Here, they viewed images of scenes that matched the scene descriptions in the imagery task while their 
EEG was again recorded. In each trial, a single image was shown at the center of the screen for 1000 ms. To make 
both tasks visually as similar as possible, we presented each stimulus in the perception task within the same 
black frame as in the imagery task and there also was a red fixation dot visible at the center of the image which 
the participants were instructed to attend continuously. Between each stimulus presentation, there was a jittered 
ITI of 300–700 ms in which again the black fixation dot surrounded by the black frame was visible. Each of the 
48 images (see Stimuli) was presented 20 times for a total of 960 trials (480 per property category), except for 
one participant who only completed 416 trials (after balancing across categories) due to a technical error during 
the EEG recording. The trial order was fully randomized. Both imagery and perception tasks were interspersed 
by numerous self-paced breaks. The entire experiment, including EEG preparation, took between 2.5 and 3.5 h. 
Stimulus presentation was controlled using  Psychtoolbox49.

EEG data acquisition and preprocessing
EEG data was acquired using an Easycap system with 64 channels and a Brain Products amplifier. The data was 
recorded at a sample rate of 500 Hz with Fz as the reference. The electrode arrangement followed the standard 
10–10 system. All preprocessing was conducted using  FieldTrip50. EEG was high- and low-pass filtered between 
1 and 90 Hz, band-stop filtered to remove 50 Hz line noise, epoched between − 1000 ms and 5000 ms for the 
imagery data and − 1000 ms and 2000 ms for the perception data and baseline-corrected with a baseline win-
dow of 500 ms for imagery and 200 ms for perception. The EEG signal was then downsampled to 200 Hz. Noisy 
channels were removed by calculating the variance of each channel and rejecting outlier channels on this metric 
through visual inspection. Finally, independent component analysis (ICA) was applied to the EEG data and eye 
artifact components were removed through visual inspection.
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Frequency decomposition
All of our frequency decompositions were conducted separately for each trial and each channel. We transformed 
the EEG signals within the entire 4000 ms imagery period into the frequency domain. For the perception data, the 
period from − 200 to 1000 ms was transformed into the time–frequency domain using a fixed-size 500 ms sliding 
window with 50 ms steps. For both decompositions, we utilized multitapers (15 DPSS tapers for imagery and 
3 for perception) with constant 2 Hz frequency smoothing as implemented in FieldTrip. We chose multitapers 
in particular to increase power in our frequency-based analyses. Imagery data tends to be noisy (e.g.18,44) and 
the multitaper approach typically increases the signal-to-noise ratio in frequency-resolved data at the expense 
of increased temporal and frequency  smoothing51. In addition, we decided to omit temporal resolution of the 
frequency decomposition of the imagery data while maintaining it for the perception data in order to further 
boost power, since imagery representations have been shown to be relatively invariable across  time18,28,29 while 
perceptual representations have been shown to be temporally variable as a function of the different processing 
stages in the visual  hierarchy29–32. Extracted frequencies ranged from 4 to 30 Hz, thus covering the theta (4–7 Hz), 
alpha (8–13 Hz) and beta (14–30 Hz) frequency bands.

Decoding analyses
All decoding analyses were conducted using  CoSMoMVPA52. We employed linear discriminant analysis (LDA) 
classifiers which were trained within-subject on power patterns across all channels (see Fig. 2).

In order to assess how the individual imagined scenes and their properties are represented in neural activ-
ity patterns, we employed two decoding approaches and solely altered the features on which we conducted 
these analyses to answer different questions. The first approach was a mean pairwise scene decoding analysis in 
which classifiers were trained to discriminate between each possible pair of scenes and the resulting pairwise 
decoding accuracies were averaged across pairs, yielding a measure of discriminability among individual scenes 
from neural responses. The second approach was a scene property decoding analysis in which classifiers had to 
distinguish for each property in which of two property categories a scene belonged (e.g. for naturalness, if the 
imagined scene was a natural or a man-made scene).

First, we assessed at which neural frequencies scene information is represented by running the mean pairwise 
scene decoding and the scene property decoding on power patterns at each individual frequency from 4 to 30 Hz 
in the frequency-resolved imagery EEG data (see Fig. 2a). Classifiers were trained using a leave-one-trial-out 
cross-validation scheme in which one trial per stimulus was left out to avoid imbalance between conditions. 
Decoding accuracies were calculated as the mean of all cross-validation fold accuracies. For the mean pairwise 
scene decoding, this resulted in one mean pairwise scene decoding accuracy at each frequency for each partici-
pant. For the scene property decoding, this yielded one decoding accuracy at each frequency for each property 
and each participant.

Second, we examined if there are scene representations in the alpha frequency band that are shared between 
imagery and different stages of perceptual processing across time. We again conducted the mean pairwise and 
property decoding analyses, but trained the classifiers on power patterns across the entire alpha frequency 
range (8–13 Hz) in the frequency-resolved imagery data and tested them on the alpha power patterns at each 
time point in the time–frequency resolved perception data and vice versa (see Fig. 2b). The decoding accura-
cies of both train-test directions were averaged, which resulted in one mean pairwise cross-decoding accuracy 
time course as well as four property category cross-decoding accuracy time courses for each participant. We 
also exploratively conducted all imagery-perception cross-decoding analyses in the theta and beta bands (see 
supplementary Fig. S3).

Finally, it is possible that during the property decoding analyses the classifiers did not utilize property category 
information, but just exploited differences in features of individual imagined and perceived scenes. To investigate 
this, we conducted a shuffled property decoding analysis in which we estimated how well the classifiers perform 
if they are constrained to individual scene feature information, without access to property category information 
and compared this performance to the original property decoding. Within each participant, the 16 scenes were 
randomly assigned to two mock property categories for all possible 

(

16

8

)

 = 12,780 permutations and at each 
permutation, classifiers were trained to distinguish between the property categories. Decoding accuracies were 
then averaged across permutations. Since in this decoding scheme the property category information was ran-
domized, classifiers were limited to discriminate based on differences in the individual scene features in each 
category. If the property decoding only exploited individual scene features, the shuffled property decoding 
performance should be identical or highly similar to it. If, however, property category information was also used 
for property discrimination in the original analysis, the shuffled property decoding performance should be 
reduced in comparison since the classifiers in the shuffled analysis had no access to this additional source of 
information. We applied the shuffled property decoding scheme to both the frequency-resolved imagery property 
decoding and our imagery-perception property cross-decoding. We tested the difference between property 
decoding and shuffled property decoding by assessing if the peak decoding accuracy of each property in the 
imagery property decoding and imagery-perception property cross-decoding is greater than the decoding accu-
racy at the respective frequency or time point in the shuffled property decoding. For the imagery-perception 
cross-decoding, this comparison was omitted for naturalness since we found no interpretable above-chance 
cross-decoding performance for this property in the original analysis. We also conducted the shuffled property 
decoding across all frequencies in the imagery property decoding and all time points in the imagery-perception 
property cross-decoding (see supplementary Fig. S4) in order to investigate if the shuffled property (cross-)
decoding was equal to or exceeded the peak property (cross-)decoding at the frequencies or time points at which 
we did not conduct the comparison. These analyses showed that this was not the case.
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We investigated the temporal dynamics of imaginary scene representations as well. However, when conducting 
the aforementioned mean pairwise and property decoding analyses on broadband EEG responses at each time 
point, consistent with a previous imagery  study18,44, we did not find robust above-chance decoding performance 
(see supplementary Fig. S5).

Statistical testing
Decoding accuracies in all frequency-resolved and time-resolved analyses were tested against chance level (50%) 
using threshold-free cluster enhancement (TFCE)53 as implemented in CoSMoMVPA. Multiple comparison 
correction was conducted by comparing actual TFCE statistics to a null distribution of maximum TFCE statis-
tics, estimated using a permutation test with 10,000 sign permutations. The resulting z-scores were converted 
to p-values and thresholded at p < 0.05 (one-tailed). In our time-resolved analyses, only the post-stimulus time 
points were tested for significance. We compared the peak property (cross-)decoding accuracies to the shuffled 
property (cross-)decoding accuracies at the respective frequency or time point using paired, one-tailed Wilcoxon 
signed rank tests. All statistical tests were conducted on the full sample of n = 49.

Data availability
Data and analysis code of the main analyses are openly available from our OSF repository: https:// osf. io/ vxhtw/.

Received: 20 October 2023; Accepted: 28 May 2024

References
 1. Pearson, J. The human imagination: The cognitive neuroscience of visual mental imagery. Nat. Rev. Neurosci. 20(10), 10. https:// 

doi. org/ 10. 1038/ s41583- 019- 0202-9 (2019).
 2. Boccia, M. et al. I can see where you would be: Patterns of fMRI activity reveal imagined landmarks. Neuroimage 144, 174–182. 

https:// doi. org/ 10. 1016/j. neuro image. 2016. 08. 034 (2017).
 3. Johnson, M. R. & Johnson, M. K. Decoding individual natural scene representations during perception and imagery. Front. Human 

Neurosci. https:// doi. org/ 10. 3389/ fnhum. 2014. 00059 (2014).
 4. O’Craven, K. M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. 

Cogn. Neurosci. 12(6), 1013–1023. https:// doi. org/ 10. 1162/ 08989 29005 11375 49 (2000).
 5. Dijkstra, N., Bosch, S. E. & van Gerven, M. A. J. Shared neural mechanisms of visual perception and imagery. Trends Cogn. Sci. 

23(5), 423–434. https:// doi. org/ 10. 1016/j. tics. 2019. 02. 004 (2019).
 6. Pearson, J., Naselaris, T., Holmes, E. A. & Kosslyn, S. M. Mental imagery: Functional mechanisms and clinical applications. Trends 

Cogn. Sci. 19(10), 590–602. https:// doi. org/ 10. 1016/j. tics. 2015. 08. 003 (2015).
 7. Bastos, A. M. et al. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85(2), 

390–401. https:// doi. org/ 10. 1016/j. neuron. 2014. 12. 018 (2015).
 8. Chen, L., Cichy, R. M. & Kaiser, D. Alpha-frequency feedback to early visual cortex orchestrates coherent naturalistic vision. Sci. 

Adv. https:// doi. org/ 10. 1126/ sciadv. adi23 21 (2023).
 9. Fries, P. Rhythms for cognition: Communication through coherence. Neuron 88(1), 220–235. https:// doi. org/ 10. 1016/j. neuron. 

2015. 09. 034 (2015).
 10. van Kerkoerle, T. et al. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. 

Proceed. Nat. Acad. Sci. 111(40), 14332–14341. https:// doi. org/ 10. 1073/ pnas. 14027 73111 (2014).
 11. Bartsch, F., Hamuni, G., Miskovic, V., Lang, P. J. & Keil, A. Oscillatory brain activity in the alpha range is modulated by the content 

of word-prompted mental imagery. Psychophysiology 52(6), 727–735. https:// doi. org/ 10. 1111/ psyp. 12405 (2015).
 12. Michel, C. M., Kaufman, L. & Williamson, S. J. Duration of EEG and MEG α suppression increases with angle in a mental rotation 

task. J. Cognit. Neurosci. 6(2), 139–150. https:// doi. org/ 10. 1162/ jocn. 1994.6. 2. 139 (1994).
 13. Salenius, S., Kajola, M., Thompson, W. L., Kosslyn, S. & Hari, R. Reactivity of magnetic parieto-occipital alpha rhythm during 

visual imagery. Electroencephalogr. Clin. Neurophysiol. 95(6), 453–462. https:// doi. org/ 10. 1016/ 0013- 4694(95) 00155-7 (1995).
 14. Short, P. L. The objective study of mental imagery. Br. J. Psychol. 44(1), 38 (1953).
 15. Slatter, K. H. Alpha rhythms and mental imagery. Electroencephalogr. Clin. Neurophysiol. 12(4), 851–859. https:// doi. org/ 10. 1016/ 

0013- 4694(60) 90133-4 (1960).
 16. Grootswagers, T., Wardle, S. G. & Carlson, T. A. Decoding dynamic brain patterns from evoked responses: A tutorial on multivari-

ate pattern analysis applied to time series neuroimaging data. J. Cognit. Neurosci. 29(4), 677–697. https:// doi. org/ 10. 1162/ jocn_a_ 
01068 (2017).

 17. Haynes, J.-D. A primer on pattern-based approaches to fMRI: Principles, pitfalls, and perspectives. Neuron 87(2), 257–270. https:// 
doi. org/ 10. 1016/j. neuron. 2015. 05. 025 (2015).

 18. Xie, S., Kaiser, D. & Cichy, R. M. Visual imagery and perception share neural representations in the alpha frequency band. Curr. 
Biol. 30(13), 2621-2627.e5. https:// doi. org/ 10. 1016/j. cub. 2020. 04. 074 (2020).

 19. Epstein, R. A. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cognit. Sci. 12(10), 388–396. 
https:// doi. org/ 10. 1016/j. tics. 2008. 07. 004 (2008).

 20. Mak, M., de Vries, C. & Willems, R. M. The influence of mental imagery instructions and personality characteristics on reading 
experiences. Collabra Psychol. 6(1), 43. https:// doi. org/ 10. 1525/ colla bra. 281 (2020).

 21. Schacter, D. L., Benoit, R. G. & Szpunar, K. K. Episodic future thinking: Mechanisms and functions. Curr. Opin. Behav. Sci. 17, 
41–50. https:// doi. org/ 10. 1016/j. cobeha. 2017. 06. 002 (2017).

 22. Groen, I. I., Silson, E. H. & Baker, C. I. Contributions of low-and high-level properties to neural processing of visual scenes in the 
human brain. Philos. Trans. R. Soc. B Biol. Sci. 372(1714), 20160102. https:// doi. org/ 10. 1098/ rstb. 2016. 0102 (2017).

 23. Park, S., Konkle, T. & Oliva, A. Parametric coding of the size and clutter of natural scenes in the human brain. Cerebral Cortex 
25(7), 1792–1805. https:// doi. org/ 10. 1093/ cercor/ bht418 (2015).

 24. Kaiser, D., Quek, G. L., Cichy, R. M. & Peelen, M. V. Object vision in a structured world. Trends Cognit. Sci. 23(8), 672–685. https:// 
doi. org/ 10. 1016/j. tics. 2019. 04. 013 (2019).

 25. Võ, M.L.-H. The meaning and structure of scenes. Vis. Res. 181, 10–20. https:// doi. org/ 10. 1016/j. visres. 2020. 11. 003 (2021).
 26. Cichy, R. M., Khosla, A., Pantazis, D. & Oliva, A. Dynamics of scene representations in the human brain revealed by magnetoen-

cephalography and deep neural networks. NeuroImage 153, 346–358. https:// doi. org/ 10. 1016/j. neuro image. 2016. 03. 063 (2017).
 27. Harel, A., Groen, I. I., Kravitz, D. J., Deouell, L. Y. & Baker, C. I. The temporal dynamics of scene processing A multifaceted EEG 

investigation. Eneuro. 3(5), 1. https:// doi. org/ 10. 1523/ ENEURO. 0139- 16. 2016 (2016).

https://osf.io/vxhtw/
https://doi.org/10.1038/s41583-019-0202-9
https://doi.org/10.1038/s41583-019-0202-9
https://doi.org/10.1016/j.neuroimage.2016.08.034
https://doi.org/10.3389/fnhum.2014.00059
https://doi.org/10.1162/08989290051137549
https://doi.org/10.1016/j.tics.2019.02.004
https://doi.org/10.1016/j.tics.2015.08.003
https://doi.org/10.1016/j.neuron.2014.12.018
https://doi.org/10.1126/sciadv.adi2321
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1073/pnas.1402773111
https://doi.org/10.1111/psyp.12405
https://doi.org/10.1162/jocn.1994.6.2.139
https://doi.org/10.1016/0013-4694(95)00155-7
https://doi.org/10.1016/0013-4694(60)90133-4
https://doi.org/10.1016/0013-4694(60)90133-4
https://doi.org/10.1162/jocn_a_01068
https://doi.org/10.1162/jocn_a_01068
https://doi.org/10.1016/j.neuron.2015.05.025
https://doi.org/10.1016/j.neuron.2015.05.025
https://doi.org/10.1016/j.cub.2020.04.074
https://doi.org/10.1016/j.tics.2008.07.004
https://doi.org/10.1525/collabra.281
https://doi.org/10.1016/j.cobeha.2017.06.002
https://doi.org/10.1098/rstb.2016.0102
https://doi.org/10.1093/cercor/bht418
https://doi.org/10.1016/j.tics.2019.04.013
https://doi.org/10.1016/j.tics.2019.04.013
https://doi.org/10.1016/j.visres.2020.11.003
https://doi.org/10.1016/j.neuroimage.2016.03.063
https://doi.org/10.1523/ENEURO.0139-16.2016


11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12796  | https://doi.org/10.1038/s41598-024-63320-4

www.nature.com/scientificreports/

 28. Corriveau, A., Kidder, A., Teichmann, L., Wardle, S. G. & Baker, C. I. Sustained neural representations of personally familiar people 
and places during cued recall. Cortex 158, 71–82. https:// doi. org/ 10. 1016/j. cortex. 2022. 08. 014 (2023).

 29. Dijkstra, N., Mostert, P., de Lange, F. P., Bosch, S. & van Gerven, M. A. Differential temporal dynamics during visual imagery and 
perception. Elife 7, e33904. https:// doi. org/ 10. 7554/ eLife. 33904 (2018).

 30. Carlson, T. A., Hogendoorn, H., Kanai, R., Mesik, J. & Turret, J. High temporal resolution decoding of object position and category. 
J. Vis. 11(10), 9. https:// doi. org/ 10. 1167/ 11. 10.9 (2011).

 31. Singer, J. J. D., Cichy, R. M. & Hebart, M. N. The spatiotemporal neural dynamics of object recognition for natural images and line 
drawings. J. Neurosci. 43(3), 484–500. https:// doi. org/ 10. 1523/ JNEUR OSCI. 1546- 22. 2022 (2023).

 32. King, J.-R. & Dehaene, S. Characterizing the dynamics of mental representations: The temporal generalization method. Trends 
Cognit. Sci. 18(4), 203–210. https:// doi. org/ 10. 1016/j. tics. 2014. 01. 002 (2014).

 33. Marks, D. F. Visual imagery differences in the recall of pictures. Br. J. Psychol. 64(1), 17–24. https:// doi. org/ 10. 1111/j. 2044- 8295. 
1973. tb013 22.x (1973).

 34. Dijkstra, N., Bosch, S. E. & van Gerven, M. A. J. Vividness of visual imagery depends on the neural overlap with perception in 
visual areas. J. Neurosci. 37(5), 1367–1373. https:// doi. org/ 10. 1523/ JNEUR OSCI. 3022- 16. 2016 (2017).

 35. Runge, M. S., Cheung, M. W. L. & D’Angiulli, A. Meta-analytic comparison of trial- versus questionnaire-based vividness report-
ability across behavioral, cognitive and neural measurements of imagery. Neurosci. Conscious. https:// doi. org/ 10. 1093/ nc/ nix006 
(2017).

 36. Greene, M. R. & Oliva, A. Recognition of natural scenes from global properties: Seeing the forest without representing the trees. 
Cognit. Psychol. 58(2), 137–176. https:// doi. org/ 10. 1016/j. cogps ych. 2008. 06. 001 (2009).

 37. Dijkstra, N., Ambrogioni, L., Vidaurre, D. & van Gerven, M. Neural dynamics of perceptual inference and its reversal during 
imagery. eLife 9, e53588. https:// doi. org/ 10. 7554/ eLife. 53588 (2020).

 38. Linde-Domingo, J., Treder, M. S., Kerrén, C. & Wimber, M. Evidence that neural information flow is reversed between object 
perception and object reconstruction from memory. Nat. Commun. 10(1), 1. https:// doi. org/ 10. 1038/ s41467- 018- 08080-2 (2019).

 39. Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. 
Neurosci. 15(8), 536–548. https:// doi. org/ 10. 1038/ nrn37 47 (2014).

 40. Groen, I. I. A., Ghebreab, S., Prins, H., Lamme, V. A. F. & Scholte, H. S. From image statistics to scene gist: evoked neural activity 
reveals transition from low-level natural image structure to scene category. J. Neurosci. 33(48), 18814–18824. https:// doi. org/ 10. 
1523/ JNEUR OSCI. 3128- 13. 2013 (2013).

 41. Hansen, N. E., Noesen, B. T., Nador, J. D. & Harel, A. The influence of behavioral relevance on the processing of global scene 
properties: An ERP study. Neuropsychologia 114, 168–180. https:// doi. org/ 10. 1016/j. neuro psych ologia. 2018. 04. 040 (2018).

 42. Lowe, M. X., Rajsic, J., Ferber, S. & Walther, D. B. Discriminating scene categories from brain activity within 100 milliseconds. 
Cortex 106, 275–287. https:// doi. org/ 10. 1016/j. cortex. 2018. 06. 006 (2018).

 43. Harel, A., Nador, J. D., Bonner, M. F. & Epstein, R. A. Early electrophysiological markers of navigational affordances in scenes. J. 
Cognit. Neurosci. 34(3), 397–410. https:// doi. org/ 10. 1162/ jocn_a_ 01810 (2022).

 44. Shatek, S. M., Grootswagers, T., Robinson, A. K. & Carlson, T. A. Decoding images in the mind’s eye: The temporal dynamics of 
visual imagery. Vision 3(4), 4. https:// doi. org/ 10. 3390/ visio n3040 053 (2019).

 45. Becker, C. & Laycock, R. Embracing deepfakes and AI-generated images in neuroscience research. Eur. J. Neurosci. 58(3), 2657–
2661. https:// doi. org/ 10. 1111/ ejn. 16052 (2023).

 46. Hebart, M. N. & Baker, C. I. Deconstructing multivariate decoding for the study of brain function. NeuroImage 180, 4–18. https:// 
doi. org/ 10. 1016/j. neuro image. 2017. 08. 005 (2018).

 47. Robinson, A. K., Quek, G. L. & Carlson, T. A. Visual representations: Insights from neural decoding. Ann. Rev. Vis. Sci. 9(1), 
313–335. https:// doi. org/ 10. 1146/ annur ev- vision- 100120- 025301 (2023).

 48. Zeman, A. et al. Phantasia-the psychological significance of lifelong visual imagery vividness extremes. Cortex 130, 426–440. 
https:// doi. org/ 10. 1016/j. cortex. 2020. 04. 003 (2020).

 49. Brainard, D. H. The psychophysics toolbox. Spatial Vis. 10(4), 433–436. https:// doi. org/ 10. 1163/ 15685 6897X 00357 (1997).
 50. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and 

invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869. https:// doi. org/ 10. 1155/ 2011/ 156869 (2011).
 51. Cohen, M.X. Analyzing neural time series data: Theory and practice. (2014)
 52. Oosterhof, N. N., Connolly, A. C. & Haxby, J. V. CoSMoMVPA: Multi-Modal multivariate pattern analysis of neuroimaging data 

in matlab/GNU octave. Front. Neuroinform. https:// doi. org/ 10. 3389/ fninf. 2016. 00027 (2016).
 53. Smith, S. & Nichols, T. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and 

localisation in cluster inference. NeuroImage 44(1), 83–98. https:// doi. org/ 10. 1016/j. neuro image. 2008. 03. 061 (2009).

Acknowledgements
We would like to thank Marius Geiss for his assistance in procuring the stimuli and in conducting some of the 
measurements. D.K. is supported by the Deutsche Forschungsgemeinschaft (DFG; SFB/TRR 135, project num-
ber 222641018) and an ERC Starting Grant (ERC-2022-STG 101076057). This research was further supported 
by “The Adaptive Mind”, funded by the Excellence Program of the Hessian Ministry of Higher Education, Sci-
ence, Research and Art.

Author contributions
R.S.: Conceptualization, Methodology, Data curation, Investigation, Formal analysis, Visualization, Writing—
original draft, Project administration, Writing—review and editing.
D.K.: Conceptualization, Methodology, Supervision, Project administration, Funding acquisition, Writing—
review and editing.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 63320-4.

Correspondence and requests for materials should be addressed to R.S.

https://doi.org/10.1016/j.cortex.2022.08.014
https://doi.org/10.7554/eLife.33904
https://doi.org/10.1167/11.10.9
https://doi.org/10.1523/JNEUROSCI.1546-22.2022
https://doi.org/10.1016/j.tics.2014.01.002
https://doi.org/10.1111/j.2044-8295.1973.tb01322.x
https://doi.org/10.1111/j.2044-8295.1973.tb01322.x
https://doi.org/10.1523/JNEUROSCI.3022-16.2016
https://doi.org/10.1093/nc/nix006
https://doi.org/10.1016/j.cogpsych.2008.06.001
https://doi.org/10.7554/eLife.53588
https://doi.org/10.1038/s41467-018-08080-2
https://doi.org/10.1038/nrn3747
https://doi.org/10.1523/JNEUROSCI.3128-13.2013
https://doi.org/10.1523/JNEUROSCI.3128-13.2013
https://doi.org/10.1016/j.neuropsychologia.2018.04.040
https://doi.org/10.1016/j.cortex.2018.06.006
https://doi.org/10.1162/jocn_a_01810
https://doi.org/10.3390/vision3040053
https://doi.org/10.1111/ejn.16052
https://doi.org/10.1016/j.neuroimage.2017.08.005
https://doi.org/10.1016/j.neuroimage.2017.08.005
https://doi.org/10.1146/annurev-vision-100120-025301
https://doi.org/10.1016/j.cortex.2020.04.003
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1155/2011/156869
https://doi.org/10.3389/fninf.2016.00027
https://doi.org/10.1016/j.neuroimage.2008.03.061
https://doi.org/10.1038/s41598-024-63320-4
https://doi.org/10.1038/s41598-024-63320-4


12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12796  | https://doi.org/10.1038/s41598-024-63320-4

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Representations of imaginary scenes and their properties in cortical alpha activity
	Results
	Mean pairwise scene decoding
	Scene property decoding
	Imagery-perception cross-decoding in the alpha frequency band
	Shuffled property decoding
	Relationship between imagery vividness and neural representations in the alpha band

	Discussion
	Methods
	Participants
	Stimuli
	Experiment design and procedure
	EEG data acquisition and preprocessing
	Frequency decomposition
	Decoding analyses
	Statistical testing

	References
	Acknowledgements


