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C O G N I T I V E  N E U R O S C I E N C E

Integrative processing in artificial and biological vision 
predicts the perceived beauty of natural images
Sanjeev Nara1 and Daniel Kaiser1,2*

Previous research shows that the beauty of natural images is already determined during perceptual analysis. How-
ever, it is unclear which perceptual computations give rise to the perception of beauty. Here, we tested whether 
perceived beauty is predicted by spatial integration across an image, a perceptual computation that reduces pro-
cessing demands by aggregating image parts into more efficient representations of the whole. We quantified in-
tegrative processing in an artificial deep neural network model, where the degree of integration was determined 
by the amount of deviation between activations for the whole image and its constituent parts. This quantification 
of integration predicted beauty ratings for natural images across four studies with different stimuli and designs. 
In a complementary functional magnetic resonance imaging study, we show that integrative processing in human 
visual cortex similarly predicts perceived beauty. Together, our results establish integration as a computational 
principle that facilitates perceptual analysis and thereby mediates the perception of beauty.

INTRODUCTION
During our daily lives, some visual images reliably evoke a feel-
ing of beauty while others do not. However, why do images differ 
in their ability to evoke beauty? Models of aesthetic appreciation 
assume a succession of two broadly different processing stages 
(1–3): (i) a rapid and automatic appraisal, mainly driven by ob-
jectifiable physical stimulus attributes, and (ii) a slower cognitive 
evaluation that is more strongly influenced by personal experi-
ence and context. Focusing on the physical attributes that make 
a stimulus beautiful to human observers, studies on low-level 
visual features revealed a set of properties that are associated 
with perceived beauty, such as an image’s color, curvature, or 
symmetry (4–7). The perception of beauty may thus arise from 
the presence of relatively basic features, as well as their spatial 
configuration in the image (5, 8). The important role of visual 
image properties in evoking beauty is consistent with neurosci-
entific studies that show that beauty ratings for natural images 
are predicted by activations in cortical regions responsible for 
perceptual analysis (9–11) and early neural responses associated 
with perceptual processing (12).

Despite the realization that the beauty of an image is—at least 
partially—determined during perceptual analysis, it is still largely 
unclear which perceptual mechanisms govern the formation of the 
phenomenological experience of beauty. An intriguing proposal is 
that processing fluency, that is, the ease with which is stimulus can 
be analyzed in the visual system, plays a critical role for perceived 
beauty (13, 14). This idea is further refined in the pleasure-interest 
model of aesthetic liking (PIA model), which stresses the discrep-
ancy between expected and experienced processing fluency (15). 
Critical evidence for fluency-based proposals comes from studies 
showing that the degree of structure or organization in a stimulus 
(such as whether multiple image elements can be organized ac-
cording to Gestalt principles) affects both perceptual processing 
efficiency and perceived beauty (5, 8).

One critical limitation of the human visual system is its con-
fined resources for representing multiple objects at once (16–18). 
On the neural level, simultaneous objects compete for these con-
fined resources, leading to marked reductions in neural activity 
when multiple individual objects are presented (19–21). Typical 
compositions were previously associated with a release from neu-
ral competition, alleviating the detrimental neural effects of rep-
resenting multiple simultaneous objects (22, 23). This decrease in 
competition has been linked to an increasing capacity for inte-
gration: When image elements (such as multiple objects) can be 
represented as a meaningful whole, rather than multiple unrelat-
ed entities, the visual system can efficiently reduce the complexity 
of representations, yielding a more efficient—or fluent—neural 
code (22, 24). Such effects may prominently facilitate the process-
ing of natural scenes, where usually dozens to hundreds of ob-
jects (25) are competing for representation. Although we know 
that efficient neural integration facilitates perceptual analysis and 
thus increases perceptual fluency, it is unclear whether efficient 
integration similarly determines perceived beauty.

Here, we thus tested whether the degree of visual integration 
across an image can reliably predict whether natural images are 
perceived as beautiful. To quantify integration, we used a deep 
neural network (DNN) as a model of the biological visual process-
ing cascade (26, 27). Within this neural network, we quantified 
integration by computing how well whole images were predicted 
by a combination of their individual parts. This integration mea-
sure predicted perceived beauty across four studies with different 
natural images and under different task demands. In the light of 
recent reports of critical differences between DNN models and 
human brain and behavior (28–30), we, however, cannot assert 
with highest confidence that integrative processing in DNNs faith-
fully resembles integrative processing in the human visual system. 
We thus applied the same analysis logic to human functional mag-
netic resonance imaging (fMRI) data recorded for a subset of images. 
We show that integration in scene-selective visual cortex predicts 
perceived beauty in a similar way as our DNN-derived quantifica-
tion of integration. Together, these results highlight that inte-
gration is a critical computation for the evaluation of beauty in 
natural images.
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RESULTS
Quantifying integration in a DNN
Here, we tested whether the degree of visual integration across an 
image can reliably predict whether the image is rated as beautiful. To 
quantify integration, we used a DNN as a model of the biological 
visual system (26, 27). Specifically, we used a VGG16 network archi-
tecture (31) pretrained on scene categorization using the Places365 
image set (32) (Fig. 1A).

Within this neural network, we quantified integration by com-
puting how well whole images were predicted by a combination of 
their individual parts, where accurate prediction indexes largely 
parallel processing, and thus a low degree of integration, while less 
accurate prediction indexes interactive processing across image 
parts, and thus a higher degree of integration. This logic is derived 
from human neuroimaging studies, which have shown that the aver-
age response to multiple image elements accurately predicts the re-
sponse to the full image (33–37), and that a relative decrease in this 
prediction indicates integrative processing that renders responses to 
the whole image dissimilar from the responses to its parts (24, 34, 
38). Recent computational investigations suggest that DNNs show a 
similar averaging of responses for multiple image elements (39), al-
though average responses in DNNs do not always resemble repre-
sentations to the whole as faithfully as in the human brain (40). 
Critically, a recent study suggests that DNNs integrate information 
in similar ways as the human brain, evidenced by nonlinearities in 
responses for multiple typically configured objects (41), similar to 
those observed in visual cortex (34).

Here, we computed integrative processing for individual images, 
by feeding the network two halves of an image (e.g., the bottom-left 
and top-right quadrants versus the bottom-right and top-left quad-
rants), as well as the full image (Fig. 1B). For each image, and sepa-
rately for each network layer, we then computed how much the 
activation pattern to the full image was correlated to the average 
activation pattern to the two halves. The strength of this correlation 
was taken as a measure of integrative processing, where lower values 

(i.e., a higher dissimilarity between the whole and its parts) indi-
cates a higher degree of integration (Fig. 1C). The integration mea-
sure was computed separately at five different spatial granularities, 
where halves were created by dividing the image into 2 × 2, 4 × 4 (as 
in Fig. 1B), 8 × 8, 16 × 16, or 32 × 32 identical squares. Each image 
half contained all odd or all even squares (i.e., corresponding to ei-
ther all white or black squares on a checkerboard). This procedure 
allowed us to probe integrative processing at different spatial scales.

We then tested whether our DNN-derived integration measure 
could successfully predict perceived beauty. To this end, we use the 
image-specific integration measure to predict beauty ratings in a se-
ries of four studies with varying image sets and task demands.

Predicting perceived beauty from integration in a DNN
In study 1, we collected beauty ratings for 250 natural scene images 
from 25 online participants (Fig. 2A; see Materials and Methods for 
details). During our experiment, we only showed the images briefly 
(50-ms exposure time). Previous work has shown that observers can 
judge the beauty of an image even under such brief presentation 
regimes (42). We reasoned that brief exposure would lead to more 
successful prediction of perceived beauty from our integration mea-
sure, as observers do not have time for extensive cognitive evalua-
tion of the image. Correlating the integration measure with beauty 
ratings revealed a strong relationship between integration and per-
ceived beauty, with correlations of up to r = 0.6 (Fig. 2B), showing 
that a higher degree of integrative processing predisposes a higher 
beauty rating. There were two notable patterns in these correlations: 
First, correlations were strongest in intermediate to late network lay-
ers, suggesting that integration over mid- and high-level features 
determines perceived beauty. Second, correlations were apparent 
across all spatial scales but strongest for the coarser scales, with a 
decrease for the 16 × 16 and 32 × 32 scales. This suggests that inte-
gration across larger parts of the images is a stronger predictor of 
perceived beauty than integration across fine details. To test whether 
the integration measure could also accurately predict beauty ratings 

Fig. 1. DNN-based quantification of integrative processing. (A) We used a VGG16 DNN as an in silico model of cortical scene processing. The DNN was trained on scene 
categorization using the Places365 dataset. (B) We fed the DNN with each full image, as well as with two halves of the images. Halves were generated by obscuring 50% 
of the image in a checkerboard-like fashion, with different spatial scales (i.e., number of squares on the checkerboard). The example shows the 4 × 4 spatial scale. To 
quantify integration, we correlated the layer-specific activation pattern to each whole image with the average of the activation patterns to the two halves. (C) When the 
resulting correlation is low, one can infer more integration (as integrative processes are not captured by the activation patterns to the parts), whereas when the correlation 
is high, one can infer less integration (as the average of the parts accurately captures the whole).
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for novel images, we next fit a linear model on integration values 
derived from all 16 network layers, using all but one image. We then 
predicted the values for the left-out image using the fit model. After 
each image was left out once, we correlated the model predictions 
with the real beauty ratings. We found that the linear model could 
successfully predict beauty ratings for novel images at all spatial 
scales (Fig. 2C), with numerically strongest predictions for an inter-
mediate 8 × 8 spatial scale.

In study 2, we asked whether the same pattern of results could be 
replicated when observers are able to study the image as long as they 
want. We thus tested another 25 online participants, who rated the 
same 250 natural scene images. Here, they had unlimited time to 
provide their beauty rating while the image stayed on the screen, 
allowing them to also cognitively evaluate the image in detail 
(Fig. 2D). Perhaps unexpectedly, the integration measure essentially 
predicted perceived beauty equally well as for briefly presented im-
ages (Fig. 2, E and F), replicating the pattern obtained in study 1.

In study 3, we sought to replicate the findings from study 2 with 
a completely different set of 250 natural scenes, rated for their beau-
ty by 26 online observers. Here, observers additionally rated the 

complexity and order of each image (Fig.  2G; see Materials and 
Methods for details), which allowed us to gauge how the integration 
measure relates to human ratings of how complex or ordered an im-
age is (see below). Results again replicated the pattern from studies 
1 and 2, showing that integrative processing is a strong predictor for 
perceived beauty (Fig.  2, H and I). We further tested whether 
human-rated image complexity and order could explain integration 
within the DNN. Complexity and order both linearly predicted 
beauty ratings (r = 0.11, P = 0.09 for complexity, r = 0.31, P < 0.001 
for order). In a variance partitioning analysis (43, 44), we found that 
beauty predictions in a linear model were mainly driven by order 
(R2  =  0.14), with complexity (R2  <  0.01) and a combined model 
(R2 = 0.01) not predicting additional unique variance. Further, com-
plexity and order were only moderately correlated to the integration 
measure derived from the DNN (all r  <  0.22 for complexity and 
r < 0.22 for order). When complexity and order ratings were par-
tialed out, integration in the DNN could still predict beauty ratings 
well (see fig. S1), suggesting that human ratings of complexity and 
order do not fully capture the visual features that predispose inte-
grative processing in the DNN.

Fig. 2. The degree of integrative processing in a DNN predicts perceived beauty. (A) In study 1, participants briefly viewed 250 natural scene images and rated their 
beauty. (B) We then correlated the DNN-derived integration measure (see Fig. 1) with beauty ratings across images, separately for each network layer and each spatial 
scale (see left). Integration significantly predicted beauty ratings across images, with highest correlations in intermediate network layers and coarser spatial scales. (C) To 
assess predictions for novel images, we further estimated linear models with the beauty ratings as the criterion and the integration measure in each layer as predictors, 
for all but one image. We then generated predictions for the left-out images with these linear models and correlated the predicted ratings of the left-out images with the 
real ratings for these images. The linear model could predict ratings for novel images across all spatial scales. (D) In study 2, participants viewed the same set of images as 
in study 1, now with unlimited viewing time. (E and F) Results strongly resembled the results from study 1. (G) In study 3, participants viewed a disjoint set of 250 natural 
scenes images, again with unlimited viewing time. Here, participants additionally rated the images’ complexity and order (see text). (H and I) Results were again similar to 
studies 1 and 2. (J) In study 4, we used beauty ratings collected for 900 vastly different natural images from the OASIS database. (K and L) Even for such diverse images, 
our integration measures significantly predicted beauty ratings, though to a lesser extent than for the more homogeneous natural scene images. Dots indicate P < 0.05 
(corrected for multiple comparisons).
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Last, in study 4, we tested whether our integrative processing 
measure could predict perceived beauty not only for natural scenes 
but also for a wide range of photographs that depict objects, people, 
and everyday situations. Here, we used beauty ratings obtained for 
a set of 900 diverse natural images contained in the Open Affective 
Standardized Image Set (OASIS) database (45, 46) (Fig.  2J). For 
these images, given their large variability in content and emotional 
valence, we expected that predictions derived from our integrative 
processing measure would be reduced. If the integration measure 
still predicted perceived beauty in these images, however, it sug-
gests that integrative processing is a computation that predisposes 
beauty across natural images from various domains. As hypothe-
sized, correlations were indeed lower, but integrative processing 
still predicted beauty ratings (Fig. 2K). Similar to the previous stud-
ies, perceived beauty was again better predicted from intermediate 
layer activations and from coarser spatial scales. Despite these re-
duced correlations, the DNN-derived integration measure still suc-
cessfully predicted beauty ratings for novel images (Fig. 2L).

In supplementary analyses, we show that the same prediction of 
perceived beauty can be achieved with a VGG16 network trained on 
object categorization instead of scene categorization (fig.  S2) and 
that predictions are stable across categorical image clusters identi-
fied in a data-driven way (fig. S3). We further evaluated a second 
possible predictor of perceived beauty: We evaluated part-based 
similarity, that is, the degree to which parts of an image show visual 
similarity to other parts of the image. Previous research has sug-
gested that similarity between multiple parts can, like integration 
across parts, alleviate neural competition in visual cortex (47). To 
quantify part-based similarity, we computed the similarity in DNN 
activations to one half of the image and the other half of the image. 
Our data show that part-based similarity is also capable of pre-
dicting perceived beauty, albeit to a lesser extent than integration 
(fig. S4, A and B), and that the association between integration and 
beauty cannot be explained by an image’s self-similarity (fig. S4C). 
Last, we show that the degree to which whole images activate the 
network (operationalized through the L2 norm of the activation 
pattern in each layer) also predicts beauty ratings to some extent but 
that this prediction cannot account for the stronger predictions pro-
vided by our integration measure (fig. S5). When adding all three 
predictors in a linear model, a variance partitioning analysis showed 
that the integration measure predicts a substantial share of unique 
variance in the beauty ratings (fig. S6).

Together, our four studies demonstrate that a DNN-derived 
measure of integrative processing predicts perceived beauty across 
different natural images and under different task demands. Using 
a DNN provides a powerful way of estimating integrative process-
ing in an objective and scalable way, which can be used to derive a 
computational prediction for perceived beauty across large sets 
of images.

Charting visual properties that drive the prediction of 
perceived beauty
While the results thus far demonstrate that the degree of integrative 
processing in a DNN model predicts perceived beauty, they do not 
directly reveal which visual properties of the images enable this pre-
diction. To chart how different visual properties contribute to the 
prediction of perceived beauty, we conducted an additional analysis, 
in which we manipulated the images supplied to the DNN and as-
sessed how the prediction of beauty changes as a function of visual 

properties being removed from the images in a targeted way. For 
this analysis, we focused on the 8 × 8 spatial scale, which offered the 
numerically highest correlations in the original analysis (see Fig. 2). 
Analysis on the other spatial scales yielded qualitatively similar re-
sults (see fig. S7).

Specifically, we manipulated the images in three different ways 
(Fig. 3A; see Materials and Methods for details): First, to test how 
color, luminance, and contrast contribute to predictions, we gray-
scaled the images and additionally either equated their luminance 
or their luminance and contrast (48). Stripping away color, lumi-
nance, and contrast did not systematically impair the prediction of 
perceived beauty across all studies (see Fig. 3B for correlations be-
tween integration and beauty and Fig. 3C for predictions by a lin-
ear model trained on the integration measure across all layers). 
While color and luminance did not alter the predictions of per-
ceived beauty (all P > 0.06, comparison to original analysis), pre-
dictions were reduced when also the contrast was matched for 
studies 3 (P <  0.001) and 4 (P =  0.001) but not studies 1 and 2 
(both P > 0.54). Together, these results suggest that simple visual 
features like color, luminance, and contrast cannot account for our 
effects. As a proof of concept, we additionally “pixelated” the im-
ages by randomly shuffling all pixels. As expected, this extreme 
manipulation abolished the correlation between integration and 
beauty in all studies (all P < 0.001).

Second, to test how spatial frequency content contributes to pre-
dictions, we low-pass or high-pass filtered the images (49, 50). The 
high-pass–filtered images yielded predictions similar to the original 
analysis (all P >  0.06). Although low-pass–filtered images still al-
lowed for successful prediction (Fig. 3C), predictions were reduced 
compared to the original images (all P < 0.001) and compared to the 
high-pass filtered images (studies 1 to 3: all P  <  0.001; study 4: 
P = 0.084). This suggests that the prediction of beauty hinges more 
strongly on integration over details conveyed by high spatial fre-
quencies than on integration across global layout conveyed by low 
spatial frequencies.

Last, to test how the images’ global spatial configuration contrib-
utes to predictions, we rotated the images by 90° or 180° (51–53) or 
jumbled them across space (52, 54). Perhaps unexpectedly, these 
manipulations of high-level image configurations did not affect the 
prediction of beauty systematically across studies. Image rotation 
did not have any significant effect on predictions (all P > 0.10, com-
parison to original analysis; Fig. 3C). While jumbling reduced pre-
dictions in studies 1 (P < 0.001) and 2 (P = 0.048), it did not alter 
predictions in studies 3 and 4 (both P > 0.16). This suggests that the 
integration effects that mediate the perception of beauty are not con-
tingent on the typical global structure of natural scenes. This notion 
is consistent with the highest correlations observed in intermediate-
to-late network layers, with a peak in layer 11, suggesting that effec-
tive integration of features of intermediate complexity drives the 
predictions of perceived beauty. Together, the manipulation of vi-
sual properties did not unequivocally distill the features whose inte-
gration is ultimately critical for predicting beauty. The analysis, 
however, suggests that neither very basic visual features like color or 
luminance nor high-level configural properties exclusively drive 
predictions of beauty.

In another supplementary analysis, we additionally assessed 
whether image symmetry explains the prediction of perceived beau-
ty. To this end, we computed each image’s symmetry using a method 
that identifies the most prominent symmetry axes in a data-driven 
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way (55). Symmetry across the vertical and horizontal images axes 
only provided weak predictions of perceived beauty and could not 
account for the relationship between integrative processing and 
beauty (see fig. S8).

Predicting perceived beauty from integration in the human 
visual system
However, we cannot be fully sure whether our DNN indeed repli-
cates the way in which the human brain integrates information 
across images: After all, DNNs have been shown to diverge from 
human visual processing in potentially critical ways (28, 30, 40). 
Given this backdrop, we wanted to investigate whether an integra-
tive processing measure derived from human fMRI data is simi-
larly capable of predicting perceived beauty. We thus ran an fMRI 
study, in which 21 participants viewed a set of 32 natural scene 
images (which were rated for beauty in study 3). During this study, 
participants viewed the whole images as well as their two compli-
mentary halves (see Materials and Methods for details). Halves 
were the bottom-left and top-right versus the bottom-right and 
top-left quadrants, thus resembling the 2 ×  2 spatial scale in the 

DNN analysis. We extracted multivoxel fMRI patterns from a set of 
regions in retinotopic early visual cortex (V1, V2, V3, and V4) and 
scene-selective cortex [occipital place area (OPA), medial place 
area (MPA), and parahippocampal place area (PPA)]. We then per-
formed an analysis analogous to our DNN analysis: For each scene, 
we computed the correlation between the multivoxel response pat-
tern to the whole image and the average of the multivoxel response 
pattern to the two halves (Fig. 4A; see Materials and Methods for 
details). This correlation was again used as a measure of integrative 
processing, where lower correlations indicate a higher degree of in-
tegration (24, 34, 38).

Correlating the integration measure derived from the fMRI data 
with the beauty ratings for the 32 images used in the fMRI experi-
ment revealed a significant correlation in V2 and scene-selective 
PPA (Fig. 4B). However, there is a possibility that different degrees 
of image-specific integration simply reflect differences in the reli-
ability of responses across images: If an image yields less reliable 
responses, then the response cannot be approximated well to begin 
with. To address this concern, we additionally computed a measure 
of reliability for each whole scene (see Materials and Methods), 

Fig. 3. Charting integration across visual image properties. (A) Here, we manipulated the original input images supplied to the DNN to explore how the relationship 
of integration and perceived beauty changes when visual properties are stripped away in targeted ways. We performed three complementary types of image manipula-
tions: First, we gray-scaled and additionally luminance- and contrast-matched the images. In addition, as a proof of concept, we additionally removed all spatial informa-
tion by shuffling the image pixels. Second, we high-pass or low-pass filtered the images. Third, we interfered with the global configuration of the image by rotating the 
image or jumbling image parts across space. (B) Correlations between the integration measure and perceived beauty (on the 8 × 8 spatial scale) remained similar to the 
original analysis (see Fig. 2) for most manipulations, with the exception of the pixelated images and the low-pass filtered images. (C) Statistically assessing these differ-
ences in a linear modeling analysis showed that integration indeed significantly predicted perceived beauty across most of the manipulations. Only the pixelation and 
low-pass filtering reduced predictions compared to the original analysis (dashed line) across all the experiments. Further, contrast matching reduced predictions in stud-
ies 3 and 4 but not studies 1 and 2. Both very basic visual features like color and luminance and more high-level configural properties thus cannot directly account for the 
relationship of integration and perceived beauty, suggesting that features of intermediate complexity are critical for the prediction of perceived beauty.
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which we partialed out when correlating the integration measure 
and the beauty ratings. In this analysis, integration in PPA still sig-
nificantly predicted perceived beauty. We also correlated the integra-
tion measure obtained from the PPA with the integration measure 
obtained from the DNN on 2 × 2 spatial scale (Fig. 4C). We found 
significant correlations between the degree of integrative process-
ing in the PPA and the DNN, again peaking at the intermediate 
layers, where integration was most predictive of the beauty ratings 
(see Fig. 2). This suggests that integration varies across images in 
similar ways in human visual cortex and in our DNN model.

Together, our fMRI results show that integrative processing in 
scene-selective cortex and, specifically in the PPA, predicts the aes-
thetic appeal of natural images. Together with the DNN analyses, 
our fMRI data thus provide converging evidence that spatial inte-
gration is a critical computation that predisposes perceived beauty.

DISCUSSION
Our study unveils that integrative processing, as a computational 
principle in the visual system, is predictive of the perceived beauty 
of natural images. We show that a quantification of integration in an 
artificial neural network can reliably predict beauty ratings for natu-
ral scene images across different scene image sets and across different 
stimulus presentation times. Even when extrapolating the analysis 
to a widely varying set of natural images (containing objects, people, 
and scenes), integration in the network could predict perceived 
beauty. In an fMRI analysis, we show that an analogous quantifica-
tion of integration in the human visual system can equally predict 
beauty ratings for natural scenes. Together, these results provide 
critical evidence for the notion that efficient processing in sensory 
systems, as enabled by efficient spatial integration, is linked to the 
aesthetic evaluation of sensory inputs.

This notion fits well with theories that explain perceived beauty 
through processing fluency in brain systems (13, 14, 56). Efficient 

integration has been previously related to a decrease in neural com-
petition between image elements, both in simple (23, 38) and natu-
ralistic (22, 34) visual stimuli. On this note, integration reduces 
interference between image elements by aggregating them into few-
er compound representations (22, 24) and thereby increases the ease 
with which these fewer representations can be processed in parallel. 
Integrative processing may of course not constitute the only compu-
tational principle that determines processing fluency, and thereby 
perceived beauty. Uncovering other complementary principles may 
further increase the amount of variance in beauty ratings that can be 
predicted from sensory-derived measures of stimulus processing. 
Our findings support the idea of processing fluency theory that 
higher fluency relates to increased beauty. However, how do they 
relate to the PIA model (15), where the discrepancy between ex-
pected and experienced fluency is the critical determinant of per-
ceived beauty? Our pretrained DNN models also form statistical 
“expectations” about inputs, based on the distribution of visual fea-
tures in the training set. A discrepancy between expected and expe-
rienced fluency may simply result from how efficiently information 
is integrated for a given image, compared to images experienced 
during training. The PIA model also stresses the cognitive control 
factors that drive human interest in an image. While these cognitive 
factors are not captured by our modeling approach, they could be 
implemented in the future by devising models which explicitly in-
clude top-down control processes.

The finding that integrative processing predicts perceived beauty 
is also interesting because integrative processing constitutes a com-
putational principle that can operate across various features. Identi-
fying these computational principles has the potential to reconcile 
the somewhat fragmented literature on visual feature preferences. It 
will be interesting to see whether favorable levels of stimulus com-
plexity or density (8, 57, 58), the spatial regularity of visual arrange-
ments (8, 59), or even the typical compositions of artworks (5, 60, 
61) can be related to differences in integrative processing. If they 

Fig. 4. Integrative processing in scene-selective PPA predicts perceived beauty. (A) To test whether integrative processing in the human visual system similarity 
predicts perceived beauty as integrative processing in an artificial DNN, we conducted an fMRI study in which participants viewed 32 whole natural scene images and 
their corresponding halves (on the 2 × 2 spatial scale). Integration was quantified by computing the correlation between the response pattern evoked by each whole 
image (from half of the runs) and the average of the response patterns evoked by its two halves (from the other half of runs). Integration was assessed for four regions in 
early visual cortex (V1 to V4) and four regions in scene-selective cortex (OPA, MPA, and PPA). (B) The degree of integrative processing in V2 and PPA significantly correlated 
with beauty ratings across images, suggesting that integrative processing in the biological visual system is similarity related to perceived beauty as integrative processing 
in an artificial DNN. The correlation between integration and beauty ratings in PPA remained significant when controlling for the reliability of fMRI responses to the whole 
images (by assessing correlations in response patterns evoked by the whole images across experimental runs). (C) Across images, the degree of integrative processing in 
the DNN (on the 2 × 2 spatial scale) correlated with the degree of integration in the PPA, specifically in middle layers of the DNN, revealing a correspondence between 
integration in biological and artificial vision. Dots indicate P < 0.05 (corrected for multiple comparisons).
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can, differing degrees of integrative processing will provide explana-
tions for why particular types of stimulus configurations are per-
ceived as beautiful—because they are more readily integrated into a 
meaningful whole in the visual system. In this context, our DNN-
based integration measure can be readily used to evaluate various 
types of stimuli, from arrays of basic visual shapes to real-world ob-
jects, and even visual art.

Our approach shows that integration predicts beauty ratings 
across groups of observers (i.e., the shared taste across a group of 
people). However, research on individual differences indicates that 
ratings of aesthetic appeal can be highly personal and vary substan-
tially across observers in meaningful ways (62–64). For example, 
Vessel and colleagues (64) showed that only between 66% (faces), 
29% (landscapes), and 11% (architecture) of the variance in beauty 
ratings is explained by shared taste. Recent electroencephalography 
results show that such idiosyncrasies in perceived beauty are already 
reflected in early cortical responses linked to the perceptual analysis 
of faces (65) and scenes (12). While the amount of shared and per-
sonal taste varies across stimulus domains and image sets, honoring 
the interindividual variability in beauty ratings clearly promises to 
enhance image-based predictions of perceived beauty. In future 
studies, such individual differences could directly be assessed by ob-
taining integrative processing measures in the fMRI and beauty rat-
ings for the same participants: Such data would allow for linking 
individual differences in integrative processing with individual dif-
ferences in perceived beauty.

Our DNN results further highlight that integration effects at dif-
ferent spatial scales can predict perceived beauty. This suggests that 
the efficiency of sensory processing that is critical for rating aesthetic 
appeal is computed at different levels of detail, from the integration 
of local spatial features that do not necessarily transport semantic 
information to the integration of larger regions that unites semanti-
cally meaningful image elements. When systematically manipulating 
the input to the DNN by changing image properties, we found that 
neither basic characteristics like color and luminance of an image 
nor configural high-level properties like scene orientation (51–53) or 
coarse spatial structure (52, 54) reduced the predictions of beauty 
from our integration measure. This is interesting, because it suggests 
that the integration of features of intermediate complexity drives the 
prediction of beauty. What these features could be is an interesting 
question for future research. We further discuss this issue below, 
based on our understanding of representations in scene-selective 
PPA. Beyond these considerations, it will be interesting to see wheth-
er integration effects at different scales relate to different processing 
steps in the visual hierarchy, with varying sensitivity to visual and 
semantic information. An interesting future avenue would be to not 
only compute the integration of purely visual information: For in-
stance, future studies could also look at conceptual descriptors, for 
example using language models (66, 67), to capture information in-
tegration in conceptual space for visual images.

Our fMRI results show that integrative processing in the biologi-
cal brain can predict perceived beauty in a similar way as integrative 
processing in DNNs. Given recent reports of critical differences be-
tween visual processing in humans and DNNs (28–30), the similar-
ity in beauty predictions derived from a DNN and human fMRI 
data, as well as the similarity between the integrative processing 
measures in PPA and a scene-trained DNN, provides a critical test 
of the alignment between artificial and biological vision. Our find-
ings further stress the mechanistic similarity between DNNs and the 

human visual system (27, 68, 69) and showcases the possibility to 
use DNNs as high-throughput tools for uncovering the computa-
tional principles that guide visual processing (26, 70). Our focus is 
different from previous computational approaches that probe and 
optimize the prediction of beauty from activation patterns in DNNs 
(71–74) (also see fig. S9 for a prediction-based analysis on all DNN 
features in the current study). The critical difference to approaches 
that aim to maximize predictive accuracy is that these approaches 
typically do not yield deep mechanistic insights into why DNN acti-
vations allow for predicting beauty (beyond charting which training 
regimes or network layers contribute to accurate prediction). Our 
approach, by contrast, focuses on a single, interpretable predictor 
computed from network activations. We believe that such an ap-
proach opens the door to exploring, and subsequently validating, 
computational principles in the biological brain, including those 
that govern the sensory stages of aesthetic appreciation.

In the human visual system, the beauty of natural scene images 
was only robustly predicted from responses in scene-selective 
PPA. Previous studies indicate that PPA is capable of integrating 
scene elements distributed across visual space, specifically when the 
scenes form a meaningful perceptual whole (52, 75, 76). Here, we 
show that such integration processes systematically vary across 
scenes and that this variation is a determinant for a scene’s aesthetic 
appeal. An open question concerns what exactly is integrated in 
PPA. Processing in this region has previously been linked to both 
categorical and semantic attributes of a scene (53, 77, 78), as well as 
to low- and mid-level visual properties that are reliably associated 
with scenes (79–82). Our DNN analysis suggest that both mid- and 
high-level properties computed at intermediate to deep layers may 
be critical for determining perceived beauty, and PPA activations 
have indeed been linked to activations in intermediate to deep DNN 
layers before (43, 83). The results from our image manipulation 
analysis suggest that predictions of beauty cannot be pinpointed to 
low- or high-level scene features in a straightforward way. Integra-
tion across high spatial frequencies was a more powerful predictor 
of beauty than integration across low spatial frequencies. This is 
consistent with a recent report that high spatial frequencies drive 
scene-selective cortex more strongly than low spatial frequencies 
under comparable contrast statistics (84). That being said, integra-
tion across low spatial frequencies still significantly predicted per-
ceived beauty (see Fig.  3C). Delineating the types of mid-level 
features whose integration determined beauty currently remains an 
open issue: While we know that mid-level features are a critical driv-
er of high-level visual cortex responses (82, 85), what exactly these 
mid-level features entail is largely unclear. At this point, more re-
search is needed to uncover the critical features across which the 
PPA integrates information. One notable limitation of the current 
fMRI study is that we could only evaluate a small subset of images, 
which does not allow us to systematically scrutinize the features that 
drive integration effects in human visual cortex.

Besides the PPA, our data show substantial correlations between 
integration and beauty ratings in V1 to V4, which perhaps did not 
reach statistical significance given the limited number of stimuli. It 
would thus be premature to dismiss a link between integrative pro-
cessing in early visual cortex (i.e., the integration of simple visual 
features) and perceived beauty. The relatively weak and partly in-
consistent effects in early DNN layers as well as the limited influence 
of color, luminance, and contrast on predictions, however, argue 
against an extensive influence of simple visual feature integration 
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on beauty ratings. Integration in the scene-selective OPA and MPA, 
in contrast to PPA, did not predict perceived beauty. This highlights 
processing differences across the scene-selective network in visual 
cortex (77). The MPA is primarily associated with environmental 
analysis relevant for navigation (77) and may thus not be driven 
very strongly by our stimuli and task (see also the low univariate 
response in this region; fig. S10). The OPA is often associated with 
the analysis of local scene elements (83, 86) or the view-specific 
representation of scenes (87–89). The finding that integrative 
processing in PPA, but not OPA, predicts perceived beauty may 
thus indicate that the integration of more complex features than 
those coded in the OPA is most critically related to an image’s 
aesthetic appeal.

Last, our study quantified integration across visual space. Yet, 
space is not the only dimension across which efficient integration 
can mediate perceived beauty. For example, a recent study used 
DNN models to quantify the integration of visual features across 
hierarchical levels to model aesthetic perception and has, in turn, 
linked such hierarchical integration processes to parietal and frontal 
brain systems (90). Future studies could also link perceived beauty 
to integration across time: Recent studies in neuroaesthetics in-
creasingly focus on more naturalistic and dynamic stimuli (11, 91–
93), and it will be interesting to see whether efficient information 
integration in the time domain can also predict the aesthetic appeal 
of dynamically evolving visual scenes.

In sum, our study establishes integrative processing as a com-
putational principle in the visual system that is capable of explain-
ing perceived beauty. When images are more strongly integrated 
across visual space—and consequentially the representation of the 
whole gets more dissimilar to the representation of its parts—they 
are perceived as more beautiful. Gestalt psychologists famously 
noted that “the whole is something else than the sum of its parts” 
(94). Here, we show that not only the degree to which the whole is 
different from its parts has an impact on the formation of efficient 
representations the whole but also that this process is linked to 
whether or not we assign beauty to it. Our discovery provides a 
fresh impulse for research in neuroaesthetics: Moving from the 
study of individual visual features and their impact on aesthetic 
appeal toward the study of overarching computational principles 
has the potential to reconcile research on different visual features 
and stimulus domains.

MATERIALS AND METHODS
Participants
We ran three online studies in which participants rated the beauty of 
natural scene images. Study 1 was completed by 25 participants 
(mean age, 23.9; SD = 5.2; 18 male, 7 female), study 2 was completed 
by 25 participants (mean age, 24.0; SD = 4.3; 10 male, 15 female), 
and study 3 was completed by 26 participants (mean age, 24.9; 
SD = 5.2; 12 male, 13 female, 1 nonbinary). Participants were re-
cruited through Prolific (www.prolific.co) and received monetary 
reimbursement. Informed consent was provided through an online 
form. The studies were approved by the Ethical Committee of the 
Institute of Psychology at the University of York (approval refer-
ence 20228).

We additionally ran an fMRI study, where participants viewed 
whole and partial natural images. The fMRI study was completed by 
22 participants (mean age, 28.8; SD = 4.5; 10 male, 12 female). One 

participant did not complete all experimental runs and was exclud-
ed from further analyses. Participants received monetary reim-
bursement and provided written informed consent. The study was 
approved by the General Ethical Committee of the Justus Liebig 
University Gießen (approval reference AZ 25/22).

All participants were healthy adults with normal or corrected-to-
normal vision. Sample sizes were determined through convenience 
sampling, as data were subsequently averaged across participants for 
our analyses. Reliability measures showed good agreement between 
participants (see below).

Rating study design
Three behavioral studies were conducted online, using the Gorilla 
testing platform (95). In study 1, participants viewed 250 images of 
natural scene photographs in random order, sampled from the vali-
dation set of the Places365 dataset (32) to include a large variety of 
contents. All images depicted outdoor scenes. On every trial, they 
viewed a single scene, presented for 50 ms. After the scene presenta-
tion, they were presented with a slider, operated by the mouse, on 
which they adjusted how beautiful they rated the scene. Slider values 
were coded between 0 and 100. Before the experiment, beauty was 
defined to participants as how beautiful or aesthetically pleasing the 
scene is. After participants provided their ratings, participants could 
advance to the next trial by pressing a mouse button.

In study 2, participants viewed the same 250 images as in study 1, 
in random order. The study design was identical to study 1, but here, 
the slides was shown at the same time as the scene (below the im-
age). The scene was visible until participants provided their rating. 
Participants were not instructed to respond fast and were given as 
much time as needed to adjust the slider.

In study 3, participants viewed another set of 250 images in ran-
dom order, sampled similarly to studies 1 and 2, but the image set 
was completely disjunct from the previous set. The design was iden-
tical to study 2, but on every trial, the scene was accompanied by 
three sliders, on which they could adjust: (i) how complex they rated 
the scene, (ii) how ordered they rated the scene, and (iii) how beau-
tiful they rated the scene. Complexity was defined as the number of 
distinct elements (such as objects, shapes, or colors) present in the 
scene, compared to how many such items are expected in a typical 
scene. Order was defined as the degree to which the different scene 
elements (such as objects) are positioned across the scene and rela-
tive to each other in a typically structured manner. Both complexity 
and order predicted beauty ratings linearly (see Results).

Database ratings
In addition to the three behavioral studies, we used beauty ratings 
collected for the images in the OASIS database (46). This database 
contains 900 photographs depicting a large variety of contents, from 
people to objects and scenes. Beauty ratings for these images from a 
total of 757 observers were compiled by Brielmann and Pelli (45). In 
their study, each image was rated by at least 104 observers.

Behavioral data analysis
For studies 1 to 3, as well as the OASIS beauty ratings, a mean score 
for each image was computed from the ratings of all observers. 
Beauty ratings were reliable across people in studies 1 to 3, as shown 
by split-half correlations (r  >  0.89 for all studies). Beauty ratings 
were also highly correlated between studies 1 and 2, which used the 
same stimuli under brief and unlimited exposure times (r = 0.88). 
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Detailed reliability measures for the OASIS ratings are reported 
elsewhere (45), with split-half reliability r > 0.95.

DNN analysis
We used a VGG16 (31) DNN trained on scene categorization using 
the Places365 image set (32). The VGG architecture was chosen as it 
has been shown to provide a good computational approximation of 
the ventral visual pathway (96). The pretrained DNN was obtained 
from https://github.com/CSAILVision/places365. The network was 
originally deployed in Caffe (97) and imported to MATLAB using 
the Caffe Importer for the MATLAB Deep Learning Toolbox 
(https://de.mathworks.com/matlabcentral/fileexchange/61735-
deep-learning-toolbox-importer-for-caffe-models). Results from a 
VGG16 network trained on Imagenet (98) and implemented in 
MATLAB, are reported in fig. S2.

We fed the network with either the full scene or two halves of 
the scene. Halves were created by slicing the scene into 2 ×  2, 
4 × 4, 8 × 8, 16 × 16, or 32 × 32 identical squares. Each image 
half contained all odd or all even squares (i.e., corresponding to 
either all white or black squares on a checkerboard). This slicing 
yielded two image halves for each of five different spatial scales. 
The full image and all possible halves were fed to the network, 
and layer-specific activation patterns for each image were ob-
tained separately for all 16 layers of the network.

To quantify integration, we correlated the layer-specific acti-
vation patterns to the whole scene with the average response 
pattern to the scene halves, separately for each spatial scale (e.g., 
by slicing into 2 × 2 pieces). Note that any linear combination 
with equal weights (e.g., the sum) would yield equivalent cor-
relations.

The sign of the resulting correlations was flipped to yield a 
measure of integration: When processing is largely parallel, ac-
tivation patterns to the full image should be accurately predicted 
by the average of the activation patterns to the two halves (re-
sulting in a low integration measure), as previously shown in 
human cortex (33, 35–37) and for DNNs (39–41). Unlike in hu-
man cortex, averaging the response patterns to constituent ob-
jects does not perfectly predict the response to multiple objects 
(40); in our analysis, however, the overall quality of the fit is not 
critical, as we only examine relative differences in the fit across 
images. When processing is more integrative, activation pat-
terns to the full image should be less accurately predicted by the 
average of the activation patterns to the two halves (resulting in 
a higher integration measure). Measuring integration through 
such multivariate pattern combination analysis has successfully 
been used in fMRI work (24, 34, 38, 99). In sum, our procedure 
thus yielded a quantification of integration for each image, at 
each spatial scale, and in each network layer.

We also tested whether different image partitioning for quantify-
ing integration yielded similar results as our checkerboard split. Per-
forming the analysis with image halves based on a random selection 
of parts on the 4 × 4 and 8 × 8 spatial scales yielded similar results 
as the checkerboard split (figs. S11 and S12).

We additionally computed a part-based similarity measure as an 
alternative predictor for perceived beauty. To quantify part-based 
similarity, we correlated the activation pattern to one image half 
with the activation pattern to the other half, separately for each 
spatial scale and each network layer. This correlation can be di-
rectly interpreted as a measure of part-based similarity, where 

higher correlations signal greater visual correspondence between 
the image halves.

Last, we computed how much each whole image drives the DNN, 
as another alternative predictor for perceived beauty. Here, we com-
puted the L2 norm for each network layer as a measure of activation 
strength.

Raw values of the integration measure, the part-based similarity 
measure, and the L2 activation measure across DNN layers are re-
ported in fig.  S13. Intercorrelations between the measures are re-
ported in fig. S14.

Predicting beauty ratings from DNN integration
To assess how beauty rating were predicted by integration in the 
DNN, we correlated (Spearman correlations) the image-specific 
mean beauty ratings for each of the four studies with the image-
specific quantifications of integration, separately for each network 
layer. The same analysis was performed for the part-based similarity 
measure, as reported in fig. S3. All P values corresponding to these 
correlations were false-discovery-rate (FDR) corrected across net-
work layers and spatial scales.

To assess the unique contribution of integration in predicting 
beauty ratings, we also performed partial correlation analyses, 
where either the part-based similarity measure or the activation 
strength for the whole image was partialed out when correlating the 
beauty ratings with the integration measure. Partial correlations 
provide a way of assessing the association between two variables 
while removing the contribution of a third variable to this associa-
tion. In our context, the resulting partial correlations index how well 
beauty ratings are predicted by the integration measure if we ac-
count for the effect of either the part-based similarity or the activa-
tion strength for the whole image. These analyses are reported in 
figs. S3 and S4. A similar partial correlation analysis was conducted 
using the complexity and order ratings in study 3. Here, the associa-
tion between the integration measure and the beauty ratings was 
assessed while controlling for the complexity and order ratings 
(fig. S1).

To better understand how the measures jointly predict beauty 
ratings, we also performed a variance partitioning analysis, based on 
an implementation in the Net2Brain toolbox (100), where the 
unique variance accounted for by each predictor as well as each 
combination of predictors was examined in a set of linear models 
(43, 44). Specifically, we constructed linear models that contained 
one of the predictors, each possible combination of two predictors, 
or all three predictors. By subtracting the variance explained (ad-
justed R2) by the full model from the variance explained by reduced 
models, we could gauge the unique variance explained by the re-
duced model. The resulting decomposition of the variance is illus-
trated in fig. S6.

We also assessed whether the DNN integration measure could 
successfully predict beauty ratings for novel images. To this end, we 
fit a linear model with all layers included as predictors for the beau-
ty ratings for all images but one. Both the criterion and predictors 
were z-scored before estimating the regression weights. We then de-
rived a predicted beauty rating for the left-out image from the esti-
mated linear model. Repeating this procedure for all images being 
left out once yielded a predicted value for each image. To assess how 
well the model could predict the beauty ratings for the held-out im-
ages, we correlated the predicted beauty ratings with the real beauty 
ratings obtained from our human observers.
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Manipulating visual image properties
To assess which features contribute to successful prediction of per-
ceived beauty by our integration measure, we systematically manip-
ulated the visual properties of the images supplied to the DNN (see 
Fig. 3A). In a first series of manipulations, we (i) stripped away color 
of the image by gray-scaling each image, (ii) additionally equated 
the luminance of each image using the luminance equation algo-
rithm of the Spectrum, Histogram, and Intensity Normalization and 
Equalization toolbox (48), (iii) additionally equated the contrast of 
the images using the histogram matching algorithm of the SHINE 
toolbox (48), and (iv) additionally pixelated the image by shuffling 
all pixels in the 640 × 640 pixel images. Second, we assessed the 
contribution of spatial frequency content by frequency filtering the 
images. High-pass filtering was performed above a cutoff of 80 cy-
cles per image, and low-pass filtering was performed below the same 
cutoff. Last, we manipulated the spatial configuration of the image 
by rotating the image by 90° (clockwise) or 180° or by jumbling the 
image in a crisscrossed way, exchanging the upper-left and lower-
right and well as the upper-right and lower-left quadrants.

We then computed the same analysis as before, first correlating 
the integration measure across layers with the beauty ratings and 
then assessing predictions of a linear model trained on the inte-
gration measure across all layers (see Fig.  2). The impact of the 
image manipulations was assessed on the linear model predictions 
to reduce the complexity of the result patterns (avoiding excessive 
comparisons across layers). Differences between correlations were 
assessed using z-tests (101, 102). The resulting P values were FDR 
corrected across the different image manipulations.

fMRI study
During the fMRI experiment, participants viewed 32 scene images, 
which were a subset of the stimulus set used in study 3. These scenes 
were chosen to come from four broadly defined categories (beaches, 
buildings, highways, and mountains) and to cover a range of beauty 
ratings (mean average rating: 66/100; minimum: 35; maximum: 87). 
The scenes were cropped so that all images had square aspect ratio 
and resized to 512 × 512 pixels. In each of 10 fMRI runs (4.5 min 
each), participants completed 128 trials (1280 in total). In each trial, 
they saw a scene image (7.5° ×  7.5° visual angle) for 500 ms, fol-
lowed by an intertrial interval of 1500 ms, during which a black fixa-
tion cross was shown. During each run, each scene was shown in 
three possible conditions: whole image (32 trials per run), top-left 
and bottom-right quadrants only (32 trials per run), or top-right 
and bottom-left quadrants only (32 trials per run). These conditions 
thus corresponded to the 2 × 2 spatial scale in the DNN analysis. 
Each run additionally featured 32 fixation trials, during which the 
black fixation cross turned gray. Participants were instructed to 
press a button on these trials. Stimulus presentation was controlled 
using the Psychtoolbox (103).

fMRI acquisition and preprocessing
MRI data was acquired using a 3T Siemens Magnetom PRISMA Scan-
ner equipped with a 64-channel head coil. T2*-weighted gradient-
echo echo-planar images were collected as functional volumes 
(TR = 1850 ms, TE = 30 ms, 75° flip angle, 2.2-mm3 voxel size, 58 slices, 
20% gap / distance factor, 220-mm field of view, 100 × 100 matrix size, 
interleaved acquisition). In addition, a T1-weighted image (Magne-
tization Prepared Rapid Acquisition with Gradient Echoes; 1-mm3 
voxel size) was obtained as a high-resolution anatomical reference. 

During preprocessing, the functional volumes were realigned and 
coregistered to the T1 image using SPM12 (www.fil.ion.ucl.ac.uk/spm/). 
The functional data were then modeled using a general linear model 
(GLM) with separate predictors for the 32 images and the three presen-
tation conditions (the whole image and the two parts), separately for 
each run. The GLM also contained six movement regressors obtained 
during realignment and thus 102 regressors for each run.

fMRI analyses
Multivariate analyses were performed using the CoSMoMVPA 
toolbox (104). Multivoxel response patterns were obtained for 
seven regions of interest. Four early visual cortex regions were de-
fined using a template atlas (105): V1, V2, V3, and V4. In addition, 
three scene-selective regions were defined using functional group 
maps (106): the OPA (also termed transverse occipital sulcus), the 
MPA (also termed retrosplenial cortex), and the PPA. For each re-
gion, multivoxel response patterns were extracted by unfolding the 
GLM beta weights for each image and each run into a one-
dimensional vector.

We then performed an analysis similar to the DNN analysis. For 
each region, we averaged response patterns evoked by the two halves 
and correlated the resulting response pattern to the response pattern 
evoked by the full image, separately for each image. Here, the re-
sponse pattern to the whole scene always stemmed from half of the 
fMRI runs and the average response pattern to the halves stemmed 
from the other half of the runs (34). Correlations were computed 
across all possible 50/50 splits among the 10 runs and averaged 
across splits. By flipping the sign of the resulting correlations, we 
obtained a quantification of integration, where lower correlations 
index a higher degree of integration. These values were averaged 
across participants before comparing them to the beauty ratings.

From the fMRI data, we additionally obtained a quantification of 
response reliability for the whole images. This was done by correlat-
ing the response pattern to each whole image in half of the runs with 
the response pattern to the same image in the other half of the runs. 
Correlations were again averaged across all possible 50/50 splits 
among the 10 runs. This yielded a correlation for each whole image 
that indexed the stability of the response patterns across repetitions.

We additionally constructed two alternative predictors: First, 
we constructed a part-based similarity measure by correlating 
the fMRI activation pattern for one half of the image with the 
activation pattern for the other half of the image, separately for 
each region. As for the integration measure, the activation pat-
tern for each half was computed by averaging the corresponding 
patterns from half of the runs. Correlations were thus always per-
formed across runs (see above). Second, we constructed an over-
all activation measure (akin to the L2 measure for the DNN) by 
extracting the univariate activation for each whole image in each 
of the regions. Raw values of the integration measure, the part-
based similarity measure, and the univariate activation measure 
across regions are reported in fig. S10.

Predicting beauty ratings from fMRI integration
To assess how beauty ratings were predicted by integration in the hu-
man visual cortex, we correlated (Spearman correlations) the image-
specific mean beauty ratings for the 32 images used in the fMRI study 
with the image-specific fMRI quantifications of integration, sepa-
rately for each brain region. All P values corresponding to these cor-
relations were FDR corrected across regions.
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We additionally repeated this analysis while partialing out the 
quantification of reliability obtained for each image. In this way, we 
could ensure that differences in integration (i.e., differences in how 
well the combined response to the image halves predicted the re-
sponse to the whole image) were not simply resulting from differ-
ences in the reliability of responses to each of the individual images 
(where less reliable response would be harder to approximate in the 
first place). Unlike the integration measure, the part-based similar-
ity measure and the univariate activation measure did not signifi-
cantly predict beauty ratings (fig. S15).
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